α-Asarone attenuates tumor-associated macrophages-induced gemcitabine resistance in pancreatic carcinoma via the transforming growth factor-beta 1/growth factor independent 1 axis.

α-细辛脑通过转化生长因子-β1/生长因子非依赖性1轴减弱肿瘤相关巨噬细胞诱导的胰腺癌吉西他滨耐药性

阅读:10
作者:Yu Jiaqi, Xue Yuzhe, Gao Zhaofeng, Hu Lingyu, Liu Xiaorong, He Xuesong, Wang Xiaoguang
Pancreatic cancer is characterized by aggressiveness and poor prognosis. The development of gemcitabine resistance, especially tumor-associated macrophage (TAM) -induced resistance in the tumor microenvironment, has greatly limited its therapeutic effectiveness. This study investigates the effects and underlying mechanisms of the plant-derived bioactive compound α-asarone in reversing gemcitabine resistance induced by TAMs in pancreatic cancer, offering potential therapeutic alternatives. Flow cytometry was used to assess the cell cycle and apoptosis in pancreatic cancer cells. Transforming growth factor-beta 1 (TGF-β1) secretion was measured by ELISA, and Cell Counting Kit-8 assays to evaluate the survival of PANC-1 cells treated with gemcitabine. Western blotting and quantitative real-time PCR were used to analyze growth factor independent 1 (Gfi-1) expression and its association with gemcitabine resistance. α-Asarone effectively reversed gemcitabine resistance in pancreatic cancer cells. Treatment with α-asarone reduced TGF-β1 levels in TAM condition medium, which in turn led to the upregulation of Gfi-1 expression. Gfi-1 was found to negatively regulate the expression of drug resistance factors, including connective tissue growth factor (CTGF) and high mobility group box 1 (HMGB1), thereby reversing gemcitabine resistance in pancreatic cancer cells. Those results indicate that α-asarone enhances Gfi-1 expression, downregulates CTGF and HMGB1, and restores gemcitabine sensitivity by reducing TGF-β1 secretion from TAMs. α-Asarone can effectively reverse gemcitabine resistance in pancreatic cancer by reducing TGF-β1 secretion from TAMs, upregulating Gfi-1, and downregulating resistance factors such as CTGF and HMGB1. This restoration of gemcitabine sensitivity may improve the therapeutic efficacy of gemcitabine in pancreatic cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。