Genetically encoding ε-N-methacryllysine into proteins in live cells.

在活细胞中通过基因编码将 α-N-甲基丙烯酰赖氨酸合成蛋白质

阅读:6
作者:Zhu Tian-Yi, Chen Shi-Yi, Zhang Mengdi, Li Heyu, Wu Ting, Ajiboye Emmanuel, Wang Jia Wen, Jin Bi-Kun, Liu Dan-Dan, Zhou Xintong, Huang He, Wan Xiaobo, Sun Ke, Lu Peilong, Fu Yaxin, Yuan Ying, Song Hai, Sablina Anna A, Tong Chao, Zhang Long, Wu Ming, Wu Haifan, Yang Bing
Lysine acylation is a ubiquitous post-translational modification (PTM) that plays pivotal roles in various cellular processes, such as transcription, metabolism, protein localization and folding. Thousands of lysine acylation sites have been identified based on advances in antibody enrichment strategies, highly sensitive analysis by mass spectrometry (MS), and bioinformatics. However, only 27 lysine methacrylation (Kmea) sites have been identified exclusively in histone proteins. It is hard to separate, purify and differentiate the Kmea modification from its structural isomer lysine crotonylation (Kcr) using general biochemical approaches. Here, we identify Kmea sites on a non-histone protein, Cyclophillin A (CypA). To investigate the functions of Kmea in CypA, we develop a general genetic code expansion approach to incorporate a non-canonical amino acid (ncAA) ε-N-Methacryllysine (MeaK) into target proteins and identify interacting proteins of methacrylated CypA using affinity-purification MS. We find that Kmea at CypA site 125 regulates cellular redox homeostasis, and HDAC1 is the regulator of Kmea on CypA. Moreover, we discover that genetically encode Kmea can be further methylated to ε-N-methyl-ε-N-methacrylation (Kmemea) in live cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。