Quercetin-primed MSC exosomes synergistically attenuate osteoarthritis progression.

槲皮素预处理的 MSC 外泌体可协同减弱骨关节炎的进展

阅读:5
作者:Lu Mingfeng, Lou Aiju, Gao Junqing, Li Shilin, He Lilei, Fan Weifeng, Zhao Lilian
BACKGROUND: Osteoarthritis (OA), a degenerative joint disease characterized by cartilage degradation and inflammation, lacks effective disease-modifying therapies. Quercetin, a bioactive flavonoid derived from Traditional Chinese Medicine, exhibits anti-inflammatory and chondroprotective properties but is limited by poor bioavailability. Mesenchymal stem cell-derived exosomes (MSC-Exos) offer a promising strategy for targeted drug delivery and cartilage regeneration. METHODS: Bone marrow-derived MSC exosomes (Que-Exo) were isolated after preconditioning with quercetin (1µM, 24 h). Their effects were evaluated in IL-1β-stimulated chondrocytes via RT-qPCR, Western blot, transcriptomics, and proteomics. An ACLT-induced OA mouse model received intra-articular injections of Que-Exo, with cartilage integrity assessed by Safranin O staining and OARSI scoring. RESULTS: Que-Exo significantly reduced IL-1β-induced pro-inflammatory markers (MMP9 and COX-2) and restored cartilage repair genes (SOX9 and Collagen II) compared to untreated exosomes. Multi-omics analyses revealed activation of PI3K-AKT signaling and glutathione metabolism pathways. In vivo, Que-Exo mitigated cartilage degradation and preserved proteoglycan content. CONCLUSIONS: Quercetin-preconditioned MSC exosomes synergistically enhance chondroprotection and anti-inflammatory effects, offering a novel therapeutic strategy for OA by combining herbal bioactive compounds with exosome-mediated delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。