Wnt signaling aberrant activation drives ameloblastoma invasion and recurrence: bioinformatics and in vitro insights.

Wnt信号异常激活驱动成釉细胞瘤侵袭和复发:生物信息学和体外研究结果

阅读:7
作者:Qian Yemei, Zhang Hongrong, Li Jingyi, Huang Liangchong, Qin Yunfa, Zhang Jian, Wang Weihong
OBJECTIVE: This study aims to explore the regulatory mechanisms of Wnt signaling in the invasion and recurrence of ameloblastoma (AM) to provide a new theoretical basis for its treatment. METHODS: Bulk RNA sequencing was employed to analyze samples from AM patients, and identify differentially expressed genes. Subsequently, bioinformatics methods such as Weighted Gene Co-Expression Network Analysis (WGCNA), DESeq2, and KEGG enrichment analysis were utilized to construct gene co-expression networks and identify pathways associated with invasion and recurrence. Furthermore, in vitro experiments, including Cell Counting Kit-8 (CCK-8), Wound healing assays, Western blotting, and qPCR were conducted to validate the effects of Wnt signaling on AM biological functions and the expression of related genes and proteins. RESULTS: Bioinformatics analysis revealed significant activation of the Wnt signaling pathway during AM invasion and recurrence, and differential gene analysis identified specific gene expression patterns associated with the Wnt signaling pathway. In vitro experiments further demonstrated that the standard Wnt/β-catenin pathway activator, Laduviglusib significantly activated Wnt signaling, leading to a marked increase in the mRNA and protein expression levels of TCF7, β-catenin, WNT2B, and LEF1, thereby enhancing the proliferation and migration capabilities of AM cells. CONCLUSION: This study reveals the critical role of aberrant Wnt signaling activation in AM proliferation and migration, identifying it as a key driver of AM invasion and recurrence. The findings provide new insights into the mechanisms underlying AM invasion and recurrence, laying the foundation for developing novel therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。