O-GlcNAcylation modification of MyoD regulates skeletal muscle fiber differentiation by antagonizing the UPF1 pathway.

MyoD 的 O-GlcNAc 糖基化修饰通过拮抗 UPF1 通路来调节骨骼肌纤维分化

阅读:4
作者:Kou Lele, Zhang Meng, Li Xiaoshuang, Zhang Ziyang, Guo Wenjin, Zhang Boxi, Yang Peisong, Xia Yuxin, Wang Huijie, Xu Bin, Li Shize
Skeletal muscle is an essential tissue for maintaining the body's basic functions. The basic structural unit of skeletal muscle is the muscle fiber, and its type is the main factor that determines the athletic ability of animals. The O-linked N-acetylglucosamine (O-GlcNAc) modification, a reversible protein post-translational modification, is involved in many important biological processes such as gene transcription, signal transduction, cell growth, and differentiation. Myogenic differentiation factor (MyoD), the first discovered myogenic regulatory factor, facilitates the transformation of fibroblasts into skeletal muscle cells. In early laboratory studies, MyoD was found to be modified by O-GlcNAcylation. However, the regulatory effects and mechanisms of O-GlcNAcylation modification on MyoD in skeletal muscle development and differentiation remain unclear. Therefore, our research was aimed at exploring the mechanism of MyoD in skeletal muscle differentiation under the influence of O-GlcNAcylation modification, through O-linked N-acetyl glucosamine transferase (OGT) or O-N-acetylaminoglucosidase manipulation, as well as MyoD supplementation. During the differentiation of C2C12 cells, O-GlcNAcylation of MyoD was found to be mediated by OGT, through its interaction with MyoD. Additionally, OGT was found to antagonize with up-frameshift protein 1 in inhibiting the ubiquitination-mediated degradation of MyoD via the K48 site, thereby regulating myotube formation. In mouse skeletal muscle tissue, Ogt gene deletion led to the differentiation of mouse skeletal muscle fibers from fast-twitch muscle fibers to slow-twitch muscle fibers, whereas this effect was mitigated by supplementation with exogenous MyoD. These results enhance understanding of the regulatory mechanisms of O-GlcNAcylation modification of MyoD in muscle development and differentiation. Our findings also indicate potential therapeutic targets for muscle and metabolism-related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。