Cardiac fibrosis, especially in the infarct border zone, leads to decreased cardiac compliance, impaired systolic and diastolic function, resulting in heart failure. M6A methylation plays a role in fibrosis development. However, its underlying mechanism remains poorly understood. This study explores the role and molecular mechanisms of m6A methylation in regulating cardiac fibrosis after myocardial infarction (MI). A mouse myocardial fibrosis model post-MI was established by ligating the left coronary artery. Corresponding gene knockdown was achieved in vitro or in vivo using short hairpin RNA or fibroblast-specific AAV9 virus. Echocardiography assessed cardiac function in mice, while Masson staining determined the degree of collagen deposition post-MI. The meRIP-Seq kit detected mRNA methylation levels in myocardial tissue and hypoxia-treated cardiac fibroblasts. Expression of RNA methylation-related enzymes, fibrosis-related proteins, and SMOC2 expression in the myocardial tissue or cardiac fibroblasts were detected using western blotting. Actinomycin D assessed SMOC2 mRNA stability. Results demonstrated increased levels of m6A methylation and METTL3 expression in myocardial fibrosis tissue post-MI and in hypoxia-treated cardiac fibroblasts. In vivo METTL3 downregulation reduced the fibrotic area and improved cardiac function, while METTL3 downregulation in vitro can alleviate cardiac fibroblast proliferation and differentiation after hypoxia. Mechanistically, METTL3 promoted SMOC2 mRNA stability by increasing its m6A methylation level, thereby regulating cardiac fibroblast proliferation and differentiation. Together, our work uncovers a critical link between METTL3 and SMOC2, providing insight into the functional importance of the mRNA m6A methylation and its modulators in cardiac fibrosis post MI.
METTL3 Silencing Suppresses Cardiac Fibrosis Post Myocardial Infarction via m6A Modification of SMOC2.
METTL3 沉默通过 SMOC2 的 m6A 修饰抑制心肌梗死后的心脏纤维化
阅读:12
作者:He Yanru, Pan Xiaodong, Liu Zhuyuan, Zuo Pengfei, Sheng Zulong, Hao Chunshu, Tao Zaixiao, Chen Zhongpu, Song Jiali, Ma Genshan, Ling Sunkai
| 期刊: | Journal of Cellular and Molecular Medicine | 影响因子: | 4.200 |
| 时间: | 2025 | 起止号: | 2025 Sep;29(17):e70829 |
| doi: | 10.1111/jcmm.70829 | 研究方向: | 炎症/感染 |
| 疾病类型: | 心肌炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
