Amelioration of central cardiovascular regulatory dysfunction by tropomyocin receptor kinase B in a mevinphos intoxication model of brain stem death.

在美伐磷中毒引起的脑干死亡模型中,原肌球蛋白受体激酶 B 可改善中枢心血管调节功能障碍

阅读:5
作者:Chan S H H, Chan J Y H, Hsu K S, Li F C H, Sun E Y H, Chen W L, Chang A Y W
BACKGROUND AND PURPOSE: Little information exists on the mechanisms that precipitate brain stem death, the legal definition of death in many developed countries. We investigated the role of tropomyocin receptor kinase B (TrkB) and its downstream signalling pathways in the rostral ventrolateral medulla (RVLM) during experimental brain stem death. EXPERIMENTAL APPROACH: An experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos bilaterally into the RVLM of Sprague-Dawley rats was used, in conjunction with cardiovascular, pharmacological and biochemical evaluations. KEY RESULTS: A significant increase in TrkB protein, phosphorylation of TrkB at Tyr(516) (pTrkB(Y516) ), Shc at Tyr(317) (pShc(Y317) ) or ERK at Thr(202) /Tyr(204) , or Ras activity in RVLM occurred preferentially during the pro-life phase of experimental brain stem death. Microinjection bilaterally into RVLM of a specific TrkB inhibitor, K252a, antagonized those increases. Pretreatment with anti-pShc(Y317) antiserum, Src homology 3 binding peptide (Grb2/SOS inhibitor), farnesylthioacetic acid (Ras inhibitor), manumycin A (Ras inhibitor) or GW5074 (Raf-1 inhibitor) blunted the preferential augmentation of Ras activity or ERK phosphorylation in RVLM and blocked the up-regulated NOS I/protein kinase G (PKG) signalling, the pro-life cascade that sustains central cardiovascular regulation during experimental brain stem death. CONCLUSIONS AND IMPLICATIONS: Activation of TrkB, followed by recruitment of Shc/Grb2/SOS adaptor proteins, leading to activation of Ras/Raf-1/ERK signalling pathway plays a crucial role in ameliorating central cardiovascular regulatory dysfunction via up-regulation of NOS I/PKG signalling cascade in the RVLM in brain stem death. These findings provide novel information for developing therapeutic strategies against this fatal eventuality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。