Spinal cord injury (SCI) triggers a complex cascade of cellular and molecular responses, yet the complex cellular communication remains incompletely understood. This study explored how intercellular communication contributes to the activation of microglia and astrocytes after SCI. Here, we integrated four datasets using single-cell RNA sequencing (scRNA-seq) or single-nucleus RNA sequencing (snRNA-seq) and constructed a comprehensive cellular atlas of the injured spinal cord. Transcriptomic changes in microglia and astrocytes were analyzed. We identified CD44 as a key receptor in SPP1-mediated microglial activation, which represented a subpopulation involved in inflammatory response in microglia. We defined a gliogenesis subpopulation of astrocytes that emerged at 3 dpi, which became the predominant cell type in the injured spinal cord. These astrocytes highly expressed the Nucleolin (Ncl) gene and interacted via the Pleiotrophin (Ptn) signaling pathway, which is associated with astrocyte proliferation. To validate these findings, we utilized a crush injury model. Flow cytometry of isolated microglia and astrocytes confirmed the upregulation of CD44 in microglia and NCL in astrocytes in response to SCI. In vivo results confirmed that the CD44 positive microglia accumulated and PLA results further confirmed the combination of SPP1 with CD44. In parallel, the upregulated expression of NCL in astrocytes facilitated their proliferation, underscoring the role of the NCL receptor in gliogenesis after SCI. In vitro validation demonstrated that exogenous SPP1 upregulates CD44 expression by promoting the phosphorylation of p65 and activating the NF-κB pathways in BV2 microglia, and that high expression of IL-6 indicates the activation of inflammation. PTN may enhance NCL expression and thus facilitates astrocyte proliferation. Collectively, our study identified key receptors that regulated inflammation responses and gliogenesis. Targeting the CD44 and NCL receptors may provide promising therapeutic strategies to modulate inflammation and promote tissue repair after SCI.
Integrative analysis and experimental validation identify the role of CD44 and Nucleolin in regulating gliogenesis following spinal cord injury.
综合分析和实验验证确定了 CD44 和核仁素在脊髓损伤后调节胶质细胞生成中的作用
阅读:10
作者:Shi Ming, Sun Yazhou, Ding Lu, Li Xinyue, Xu Qi, Wei Fuxin, Gao Tianshun, Deng David Y B
| 期刊: | Cell Regeneration | 影响因子: | 4.700 |
| 时间: | 2025 | 起止号: | 2025 Aug 13; 14(1):35 |
| doi: | 10.1186/s13619-025-00253-x | 靶点: | CD44 |
| 研究方向: | 细胞生物学 | 疾病类型: | 脊髓损伤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
