Amylopectin branch trimming and biosynthesis elucidated by the rice isoamylase ISA1-ISA2 heterocomplex.

水稻异淀粉酶 ISA1-ISA2 异源复合物阐明了支链淀粉的分支修剪和生物合成

阅读:5
作者:Fan Rong, Guan Zeyuan, Zhou Guanghong, Yang Xi, Zhang Fei, Wu Menglong, Wang Xuecui, Liu Jian, Chen Pei, Liu Yanjun, Zhang Delin, Yin Ping, Yan Junjie
Amylopectin, the primary form of starch in plant leaves, seeds and tubers, features a tree-like architecture with branched glucose chains. Excess branches result in the formation of soluble phytoglycogen instead of starch granules. In higher plants and green algae, the debranching enzyme isoamylase ISA1 forms either homomultimer or hetero-multimer with ISA2 to facilitate branch trimming and starch granule formation, but the molecular basis remains largely unknown. In this study, we reconstitute the rice OsISA1-ISA2 complex in vitro and determine the cryo-EM structures of the OsISA1 homodimer, as well as the malto-oligosaccharide (MOS)-free and MOS-bound OsISA1-ISA2 heterocomplex. The OsISA1 dimer shows a tail-to-tail rod-like architecture, whereas the OsISA1-ISA2 complex mainly exhibits as a trimer, with OsISA2 flanking on the N-terminal segments of the dimeric OsISA1. Combined with comprehensive biochemical analyses, these structural data elucidate the organization of the ISA1-ISA2 heterocomplex in higher plants and demonstrate how ISA1 and ISA2 cooperate during amylopectin biosynthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。