Mammalian circadian rhythms, governing ~24 h oscillations in behavior, physiology, and hormone levels, are orchestrated by transcriptional-translational feedback loops centered around the core clock protein cryptochrome 1 (CRY1). While CRY1 ubiquitination is known to regulate clock function, the roles of specific ubiquitination sites remain unclear. Here, we identify lysine 151 (K151) as a critical residue modulating the circadian period through non-canonical mechanisms. Using site-directed mutagenesis, we generated CRY1-K151Q/R mutants mimicking constitutive deubiquitination. Circadian rescue assays in Cry1/2-deficient cells revealed period shortening (K151Q: -2.25 h; K151R: -1.4 h; n = 3, p < 0.01, Student's t-test), demonstrating K151's functional importance. Despite normal nuclear localization kinetics, K151Q/R mutants exhibited reduced transcriptional repression in luciferase assays, a weakened interaction with BMAL1 by the luciferase complementation assay, and enhanced binding to E3 ligase FBXL12 (but not FBXL3) while showing more stability than wild-type CRY1. Notably, the absence of ubiquitination-linked degradation or altered FBXL3 engagement suggests a ubiquitination-independent mechanism. We propose that CRY1-K151 serves as a structural hub fine-tuning circadian periodicity by modulating core clock protein interactions rather than through traditional ubiquitin-mediated turnover. These findings redefine the mechanistic landscape of post-translational clock regulation and offer new therapeutic avenues for circadian disorders.
CRY1 Lysine 151 Regulates Circadian Rhythms Through Ubiquitination-Independent Protein Interactions.
CRY1赖氨酸151通过不依赖于泛素化的蛋白质相互作用调节昼夜节律
阅读:5
作者:Peng Jiawen, Liu Na, Ren Yixuan, Wang Jiahui, Jin Yanxia, Wang Xianping, Wang Weidong, Pan Jicheng
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 18; 26(16):7962 |
| doi: | 10.3390/ijms26167962 | 研究方向: | 表观遗传 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
