Neuropathic pain may affect patients with multiple sclerosis (MS) even in early disease. In an experimental autoimmune encephalomyelitis (EAE)-mouse model of MS, chronic alpha lipoic acid (ALA) treatment reduced clinical disease severity, but MS-neuropathic pain was not assessed. Hence, we investigated the pain-relieving efficacy and mode of action of ALA using our optimized relapsing-remitting (RR)-EAE mouse model of MS-associated neuropathic pain. C57BL/6 mice were immunized with MOG35-55 and adjuvants (Quil A and pertussis toxin) to induce RR-EAE; sham-mice received adjuvants only. RR-EAE mice received subcutaneous ALA (3 or 10 mg kg(-1) day(-1)) or vehicle for 21 days (15-35 d.p.i.; [days postimmunization]); sham-mice received vehicle. Hindpaw hypersensitivity was assessed blinded using von Frey filaments. Following euthanasia (day 35 d.p.i.), lumbar spinal cords were removed for immunohistochemical and molecular biological assessments. Fully developed mechanical allodynia in the bilateral hindpaws of vehicle-treated RR-EAE mice was accompanied by marked CD3(+) T-cell infiltration, microglia activation, and increased brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling in the dorsal horn of the lumbar spinal cord. Consequently, phospho-ERK, a marker of central sensitization in neuropathic pain, was upregulated in the spinal dorsal horn. Importantly, hindpaw hypersensitivity was completely attenuated in RR-EAE mice administered ALA at 10 mg kg(-1) day(-1) but not 3 mg kg(-1) day(-1). The antiallodynic effect of ALA (10 mg kg(-1) day(-1)) was associated with a marked reduction in the aforementioned spinal dorsal horn markers to match their respective levels in the vehicle-treated sham-mice. Our findings suggest that ALA at 10 mg kg(-1) day(-1) produced its antiallodynic effects in RR-EAE mice by reducing augmented CD3(+) T-cell infiltration and BDNF-TrkB-ERK signaling in the spinal dorsal horn.
Antiallodynic effects of alpha lipoic acid in an optimized RR-EAE mouse model of MS-neuropathic pain are accompanied by attenuation of upregulated BDNF-TrkB-ERK signaling in the dorsal horn of the spinal cord.
在优化的 RR-EAE 小鼠 MS 神经性疼痛模型中,α-硫辛酸的抗异位痛作用伴随着脊髓背角中上调的 BDNF-TrkB-ERK 信号的减弱
阅读:4
作者:Khan Nemat, Gordon Richard, Woodruff Trent M, Smith Maree T
| 期刊: | Pharmacology Research & Perspectives | 影响因子: | 2.300 |
| 时间: | 2015 | 起止号: | 2015 Jun;3(3):e00137 |
| doi: | 10.1002/prp2.137 | 种属: | Mouse |
| 研究方向: | 信号转导、神经科学 | 信号通路: | MAPK/ERK |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
