Functional genomics of innate host defense molecules in normal human monocytes in response to Aspergillus fumigatus.

正常人单核细胞对烟曲霉的先天宿主防御分子的功能基因组学研究

阅读:7
作者:Cortez Karoll J, Lyman Caron A, Kottilil Shyam, Kim Hee Sup, Roilides Emmanuel, Yang Jun, Fullmer Brandie, Lempicki Richard, Walsh Thomas J
Aspergillus fumigatus induces the release of innate immune-related molecules from phagocytic cells early in the course of infection. Little is known, however, about the complex expression profiles of the multiple genes involved in this response. We therefore investigated the kinetics of early gene expression in human monocytes (HMCs) infected with conidia of A. fumigatus using DNA microarray analysis. Total RNA from HMCs at 0, 2, 4, and 6 h was extracted, linearly amplified, hybridized onto Affymetrix HG133 Plus 2.0 gene chips, and analyzed with an Affymetrix scanner. Changes in gene expression were calculated as a ratio of those expressed by infected versus control HMCs. Aspergillus fumigatus induced differential regulation of expression in 1,827 genes (P < 0.05). Genes encoding cytokines and chemokines involved in host defense against A. fumigatus, including interleukin-1beta (IL-1beta), IL-8, CXCL2, CCL4, CCL3, and CCL20, as well as the opsonin long pentraxin 3, were up-regulated during the first 2 to 6 h, coinciding with an increase in phagocytosis. Simultaneously, genes encoding CD14, ficolin1, and MARCO were down-regulated, and genes encoding IL-10 and matrix metalloproteinase 1 were up-regulated. Up-regulation of the genes encoding heat shock proteins 40 and 110 and connexins 26 and 30 may point to novel molecules whose role in the pathogenesis of aspergillosis has not been previously reported. Verification of the transcriptional profiling was obtained for selected genes by reverse transcription-PCR and enzyme immunoassay. Thus, A. fumigatus conidia induced a coordinated expression of genes important in host defense and immunomodulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。