Systematically investigate the mechanism underlying the therapeutic effect of emodin in treatment of prostate cancer.

系统地研究大黄素治疗前列腺癌的治疗作用机制

阅读:5
作者:Yuan Gang, Mao Jingxin, Li Zheng
OBJECTIVE: To systematically investigate the mechanism underlying the therapeutic effect of emodin in treatment of prostate cancer. METHODS: Combine network pharmacology, molecular docking, molecular dynamics and experimental verification to explored the mechanism. Using the network pharmacology method, through the TCMSP, DisGeNET and Genecards database, the corresponding targets and related signaling pathways of emodin were screened, and emodin and core targets were studied by molecular docking and molecular dynamics uasing Cytoscape 3.7.2 and other software. The biological processes, cellular components and molecular functions of the key targets were determined by GO enrichment analysis. KEGG enrichment analysis identified signaling pathways associated with key targets. GEPIA and Kaplan-Meier database were used to determine the relationship between the expression of core genes in normal people and prostate cancer patients and the prognosis of patients. Cell proliferation inhibition experiment was carried out by MTT method. The mRNA and protein levels of CASP3, TNF, IL1B, TP53, PPARG, and MYC in PC-3 cells were evaluated by RT-PCR and WB method respectively. RESULTS: There were 31 common targets which closely related to emodin in the treatment of prostate cancer. PPI network analysis showed that MYC, PPARG, TP53, TNF, CASP3, IL1B were the core targets. Go and KEGG enrichment analysis showed that pathways in cancer and IL-17 signaling pathway were the key pathways. Molecular docking and molecular dynamics results indicated that emodin had good binding to prostate cancer and 6 core proteins, and the binding force with TP53 protein was the strongest and most stable. The expression of CASP3 protein in normal people was stronger than that in patients with prostate cancer, and the expression of TP53 protein was closely related to the survival rate of patients with prostate cancer. Experimental verification result revealed that EM significantly increased mRNA expressions of CASP3, PPARG and decreased protein expressions of TNF, TP53, MYC at concentrations ranging from 0.1 to 1.6 μmol/L. Emodin significantly increased protein expressions of CASP3, PPARG and decreased protein expressions of TNF, TP53, MYC, IL1B at concentrations ranging from 10 to 160 µmol/L. CONCLUSION: Emodin and TP53 have the best binding and stable conformation among core genes. Emodin exhibits a significant inhibitory effect on PC-3 cells at concentration 0.4 ~ 1.6 μmol/L. It showed that anti-prostate cancer properties by regulating cancer and 1L-17 signaling pathway through up-regulating the expressions of CASP3, PPARG genes/proteins, down-regulating IL1B, TP53, TNF, MYC genes/proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。