The exercise pressor reflex (EPR) is exaggerated in type 2 diabetes mellitus (T2DM), but the underlying central nervous system aberrations have not been fully delineated. Stimulation of muscle afferents within working skeletal muscle activates the EPR, by sending information to neurons in the brainstem, where it is integrated and results in reflexively increased mean arterial pressure (MAP) and sympathetic nerve activity. Brain insulin is known to regulate neural activity within the brainstem. We hypothesize that brain insulin injection in T2DM rats attenuates the augmented EPR, and that T2DM is associated with decreased brain insulin. Using male Sprague-Dawley rats, T2DM and control rats were generated via an induction protocol with two low doses of streptozotocin (35 and 25 mg/kg, i.p.) in combination with a 14-23-week high-fat diet or saline injections and a low-fat diet, respectively. After decerebration, MAP and renal sympathetic nerve activity (RSNA) were evaluated during EPR stimulation, evoked by electrically induced muscle contraction via ventral root stimulation, before and after (1 and 2 h post) intracerebroventricular (i.c.v.) insulin microinjections (500 mU, 50 nl). i.c.v. insulin decreased peak MAP (ÎMAP Pre (36 ± 14 mmHg) vs. 1 h (21 ± 14 mmHg) vs. 2 h (11 ± 6 mmHg), P < 0.05) and RSNA (ÎRSNA Pre (107.5 ± 40%), vs. 1 h (75.4 ± 46%) vs. 2 h (51 ± 35%), P < 0.05) responses in T2DM, but not controls. In T2DM rats, cerebrospinal fluid insulin was decreased (0.41 ± 0.19 vs. 0.11 ± 0.05 ng/ml, control (n = 14) vs. T2DM (n = 4), P < 0.01). The results demonstrated that insulin injections into the brain normalized the augmented EPR in brain hypoinsulinaemic T2DM rats, indicating that the EPR can be regulated by brain insulin. KEY POINTS: The reflexive increase in blood pressure and sympathetic nerve activity mediated by the autonomic nervous system during muscle contractions is also known as the exercise pressor reflex. The exercise pressor reflex is dangerously augmented in type 2 diabetes, in both rats and humans. In type 2 diabetic rats both cerebrospinal fluid insulin and phosphoinositide 3-kinase signalling within cardiovascular brainstem neurons decrease in parallel. Brain insulin injections decrease the magnitude of the reflexive pressor and sympathetic responses to hindlimb muscle contraction in type 2 diabetic rats. Partial correction of low insulin within the central nervous system in type 2 diabetes may treat aberrant exercise pressor reflex function.
Intracerebroventricular insulin injection acutely normalizes the augmented exercise pressor reflex in male rats with type 2 diabetes mellitus.
脑室内注射胰岛素可迅速使患有 2 型糖尿病的雄性大鼠的运动性升压反射恢复正常
阅读:14
作者:Estrada Juan A, Ishizawa Rie, Kim Han-Kyul, Fukazawa Ayumi, Hori Amane, Hotta Norio, Iwamoto Gary A, Smith Scott A, Vongpatanasin Wanpen, Mizuno Masaki
| 期刊: | Journal of Physiology-London | 影响因子: | 4.400 |
| 时间: | 2024 | 起止号: | 2024 Aug 21 |
| doi: | 10.1113/JP286715 | 种属: | Rat |
| 研究方向: | 代谢 | 疾病类型: | 糖尿病 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
