Multi-targeting chemoprevention of Chinese herb formula Yanghe Huayan decoction on experimentally induced mammary tumorigenesis

中药复方阳和华岩汤对实验性乳腺肿瘤发生的多靶点化学预防作用

阅读:5
作者:Jingwei Li, Xiaofei Liu, Hongzhi Chen, Ziyuan Sun, Hanhan Chen, Lei Wang, Xiaohui Sun, Xiangqi Li

Background

Development of safe and effective chemopreventive agents is a winning strategy in reducing the morbidity and mortality of breast cancer. The current study was to investigate the mechanism-based chemopreventive potential of a Chinese herb formula Yanghe Huayan (YHHY) Decoction on the classical 7,12-dimethylbenz(a)anthracene (DMBA) induced rat mammary carcinogenesis model.

Conclusion

The multi-components and multi-targeting properties of the YHHY Decoction support its use as a potent chemopreventive drug in breast cancer.

Methods

Female Sprague-Dawley rats at 42 days of age were orally administered with a human equivalent dose of YHHY Decoction at 0.02 ml/g (10 mg/ml) once daily, starting 1 wk. before and 4 wks following DMBA treatment. Mammary tumor occurrence was monitored every day. The length of time before palpable tumor is examined is defined as tumor-free survival time. High performance liquid chromatography (HPLC) analyses were adopted to identify major chemical compositions of the decoction. Following bioinformatics data mining and experimental analyses were performed to demonstrate the underlying mechanism of action.

Results

DMBA animals receiving YHHY Decoction exhibited a significant delay (P = 0.014) and in some animals prevention (P = 0.046) of tumor occurrence without obvious toxicity. Oncogenic myc activation was significantly suppressed in the DMBA-induced rats by the YHHY treatment. Eight major chemical compositions of the decoction were identified and were shown to interfere with multiple tumorigenic pathways simultaneously in the mammary tumors, including inducing tumor apoptosis and up-regulating pro-apoptotic protein Bax and down-regulating anti-apoptotic protein Bcl-2; suppressing abnormal cell proliferation and the MAPK/ERK, PI3K/AKT signalings; blocking neo-angiogenesis and the VEGF/KDR signaling, and inhibiting oxidative stress in the mammary tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。