This study aims to clarify the potential role of growth differentiation factor-15 (GDF-15) as a myokine in bone metabolism and muscle function in females with osteoporosis. In total, 45 female participants (71.0 ± 8.5 years) with distal radius fractures were recruited. Participants were classified as healthy/osteopenic (n = 28) (CON) or osteoporotic (n = 17) (OP) according to their T-score from the areal bone mineral density (aBMD) of the femoral neck. Body mass index, upper arm and calf circumferences, and handgrip strength were assessed. Total hip, femoral neck, and lumbar spine aBMD was measured via dual-energy x-ray absorptiometry. The focal bone quality of the distal radius was evaluated via 3D reconstructed computed tomographic images. Serum levels of GDF-15, insulin-like growth factor-1, and inflammatory markers such as tumor necrosis factor-α (TNF-α), interleukin-6, and interleukin-1β (IL-1β), as well as the corresponding mRNA levels in the pronator quadratus muscle were determined. Participants in the OP group had higher serum GDF-15 levels than those in the CON group. The mRNA levels of GDF-15, IL-1β, and TNF-α in the pronator quadratus muscle were significantly higher in the OP group than in the CON one. Levels of both serum GDF-15 and GDF-15 mRNA in muscle were positively correlated with age and negatively associated with the aBMD of the total hip and focal bone quality of the distal radius. Handgrip power was not correlated with circulating GDF-15 levels but was correlated with circumferences of the upper arm and calf, and levels of GDF-15 mRNA in muscle specimens. The mRNA levels of GDF-15 were correlated with those of inflammatory cytokines such as TNF-α and IL-1β. The mRNA levels of TNF-α were associated with circumferences of the upper arm and calf and with the aBMD of the total hip. The mRNA levels of GDF-15 in muscle were correlated with serum levels of GDF-15 and TNF-α. GDF-15 may have associations with bone metabolism in humans via paracrinological and endocrinological mechanisms. Maintenance of muscle mass and function would be influenced more by GDF-15 in muscle than by circulating GDF-15. The role of GDF-15 in bone metabolism and muscle homeostasis could be related to inflammatory responses.
Growth differentiation factor-15 as a modulator of bone and muscle metabolism.
生长分化因子-15 作为骨骼和肌肉代谢的调节剂
阅读:5
作者:Hong Seok Woo, Kang Jeong-Hyun
| 期刊: | Frontiers in Endocrinology | 影响因子: | 4.600 |
| 时间: | 2022 | 起止号: | 2022 Oct 17; 13:948176 |
| doi: | 10.3389/fendo.2022.948176 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
