Maternal obesity [body mass index (BMI) > 30 kg/m(2)] is associated with greater neonatal adiposity, cord blood (CB) insulin levels, and a proinflammatory phenotype at birth, contributing to risk of future cardiometabolic disease in the offspring. Variation in neonatal adiposity within maternal BMI groups is underappreciated, and it remains unclear whether the metabolic impairments at birth are an outcome of maternal obesity or excess fetal fat accrual. We examined the hypothesis that CB metabolites associated with fetal fat accrual differ between offspring of normal-weight and obese women. Umbilical venous blood was collected at the time of scheduled cesarean delivery from 50 normal-weight women (LE; pregravid BMI = 22.3â±â1.7 kg/m(2)) and 50 obese women (OB; BMI = 34.5â±â3.0 kg/m(2)). Neonatal adiposity was estimated from flank skinfold thickness. The first (low adiposity, LA) and third (high adiposity, HA) tertiles of neonatal %body fat were used to create four groups: OBLA, OBHA, LELA, and LEHA. CB metabolites were measured via untargeted metabolomics. Broadly, the LA offspring of OB women (OBLA) metabolite signature differed from other groups. Lauric acid (C12:0) was 82-118% higher in OBLA vs. all other groups [false discovery rate (FDR) < 0.01]. Several other fatty acids, including palmitate, stearate, and linoleate, were higher in OBLA vs. OBHA groups. CB metabolites, such as lauric acid, a medium-chain fatty acid that may improve insulin sensitivity, were associated with neonatal adiposity differently between offspring of women with and without obesity. Changes in metabolically active lipids at birth may have long-term consequences for offspring metabolism.NEW & NOTEWORTHY Using untargeted metabolomics in 100 newborns, we found that cord blood metabolite signatures associated with neonatal adiposity differed between offspring of women with and without obesity.
Metabolomic signatures of low- and high-adiposity neonates differ based on maternal BMI.
低脂肪和高脂肪新生儿的代谢组学特征因母亲的 BMI 而异
阅读:4
作者:Aydogan Mathyk Begum, Piccolo Brian D, Alvarado Fernanda, Shankar Kartik, O'Tierney-Ginn Perrie
| 期刊: | American Journal of Physiology-Endocrinology and Metabolism | 影响因子: | 3.100 |
| 时间: | 2022 | 起止号: | 2022 Jun 1; 322(6):E540-E550 |
| doi: | 10.1152/ajpendo.00356.2021 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
