Puerarin Prevents Bisphenol S Induced Lipid Accumulation by Reducing Liver Lipid Synthesis and Promoting Lipid Metabolism in C57BL/6J Mice

葛根素通过减少 C57BL/6J 小鼠肝脏脂质合成和促进脂质代谢来预防双酚 S 诱导的脂质蓄积

阅读:7
作者:Zi-Yao Wu, Li Luo, Ya-Qi Kan, Mei-Lin Qin, Hai-Ting Li, Qing-Zhi He, Huai-Cai Zeng

Abstract

Bisphenol S (BPS) is an environmental pollutant that can accumulate in the human body and cause harm. Puerarin (PUE) is a flavonoid with anti-inflammatory and antioxidant effects. In this study, we used 50 mg/kg/d BPS as a poison and PUE as an intervention for model mice for 42 d. BPS exposure significantly increased the levels of the impairment of the mice's liver function, T-CHO, TG, LDL-C, ALT, and AST in the BPS group were significantly increased (p < 0.05). Additionally, BPS exposure caused inflammatory cell infiltration in the mice liver tissue and enhanced oxidative stress response, the level of MDA was significantly increased (p < 0.05). The expression of CD36 and pparγ was stimulated after BPS exposure. Moreover, the expression of cpt1a and cpt1b, which promote fatty acid oxidation, was downregulated. After PUE intervention, the levels of genes and proteins involved in lipid synthesis (PPARγ, SREBP1C, and FASN) and metabolism (Cpt1a, Cpt1b, and PPARα) in mice returned to those of the control group, or much higher than those in the BPS group. Therefore, we hypothesized that BPS causes lipid accumulation in the liver by promoting lipid synthesis and reducing lipid metabolism, whereas PUE reduces lipid synthesis and promotes lipid metabolism. Conclusively, our results imply that long-term exposure to BPS in mice affects liver lipid metabolism and that PUE intervention could maintain the liver function of mice at normal metabolic levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。