Dicer knockdown inhibits endothelial cell tumor growth via microRNA 21a-3p targeting of Nox-4.

Dicer 敲低通过 microRNA 21a-3p 靶向 Nox-4 抑制内皮细胞肿瘤生长

阅读:5
作者:Gordillo Gayle M, Biswas Ayan, Khanna Savita, Pan Xueliang, Sinha Mithun, Roy Sashwati, Sen Chandan K
MicroRNAs (miR) are emerging as biomarkers and potential therapeutic targets in tumor management. Endothelial cell tumors are the most common soft tissue tumors in infants, yet little is known about the significance of miR in regulating their growth. A validated mouse endothelial cell (EOMA) tumor model was used to demonstrate that post-transcriptional gene silencing of dicer, the enzyme that converts pre-miR to mature miR, can prevent tumor formation in vivo. Tumors were formed in eight of eight mice injected with EOMA cells transfected with control shRNA but formed in only four of ten mice injected with EOMA cells transfected with dicer shRNA. Tumors that formed in the dicer shRNA group were significantly smaller than tumors in the control group. This response to dicer knockdown was mediated by up-regulated miR 21a-3p activity targeting the nox-4 3'-UTR. EOMA cells were transfected with miR 21a-3p mimic and luciferase reporter plasmids containing either intact nox-4 3'-UTR or with mutation of the proposed 3'-UTR miR21a-3p binding sites. Mean luciferase activity was decreased by 85% in the intact compared with the site mutated vectors (p < 0.01). Attenuated Nox-4 activity resulted in decreased cellular hydrogen peroxide production and decreased production of oxidant-inducible monocyte chemoattractant protein-1, which we have previously shown to be critically required for endothelial cell tumor formation. These findings provide the first evidence establishing the significance of dicer and microRNA in promoting endothelial cell tumor growth in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。