Antibiotic treatment induces microbiome dysbiosis and reduction of neuroinflammation following traumatic brain injury in mice.

抗生素治疗可导致小鼠脑外伤后肠道菌群失调和神经炎症减轻

阅读:7
作者:Flinn Hannah, Marshall Austin, Holcomb Morgan, Cruz Leonardo, Soriano Sirena, Treangen Todd J, Villapol Sonia
BACKGROUND: The gut microbiome is linked to brain pathology in cases of traumatic brain injury (TBI), yet the specific bacteria that are implicated are not well characterized. To address this gap, in this study, we induced traumatic brain injury (TBI) in male C57BL/6J mice using the controlled cortical impact (CCI) injury model. After 35 days, we administered a broad-spectrum antibiotics (ABX) cocktail (ampicillin, gentamicin, metronidazole, vancomycin) through oral gavage for 2 days to diminish existing microbiota. Subsequently, we inflicted a second TBI on the mice and analyzed the neuropathological outcomes five days later. RESULTS: Longitudinal analysis of the microbiome showed significant shifts in the diversity and abundance of bacterial genera during both acute and chronic inflammation. These changes were particularly dramatic following treatment with ABX and after the second TBI. ABX treatment did not affect the production of short-chain fatty acids (SCFA) but did alter intestinal morphology, characterized by reduced villus width and a lower count of goblet cells, suggesting potential negative impacts on intestinal integrity. Nevertheless, diminishing the intestinal microbiome reduced cortical damage, apoptotic cell density, and microglial/macrophage activation in the cortical and thalamic regions of the brain. CONCLUSIONS: Our findings suggest that eliminating colonized gut bacteria via broad-spectrum ABX reduces neuroinflammation and enhances neurological outcomes in TBI despite implications to gut health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。