Metabolic reprogramming and epigenetic modification are two hallmarks of cancer. Protein lysine lactylation (Kla) is a novel type of glycolysis lactate-triggered posttranslational modification. However, the role of Kla in breast cancer (BC) remains largely unknown. Here, western blot, and immunohistochemical (IHC) staining of BC tissues revealed that global Kla levels were upregulated in BC tissues, and high levels of Kla were correlated with poor prognosis of patients with BC. A series of in vitro and in vivo assays demonstrated that interruption of glycolysis by lactate dehydrogenase (LDH) inhibitor or silencing LDHA and LDHB repressed the malignant behaviors of BC cells. Moreover, 4D label-free quantitative lactylproteomics analysis of BC tissues and cells revealed that lactylated proteins widely existed in several subcellular compartments and were closely associated with various cancer-related biological processes. Notably, two previously unresearched sites of histone lactylation, H4K79 lactylation (H4K79la) and H4K91 lactylation (H4K91la), were identified to be hyperlactylated in cancer tissues and cells. Glycolytic genes, such as lactate dehydrogenase A (LDHA), phosphoglycerate kinase 1 (PGK1), and hexokinase 1 (HK1) were identified to be the potential candidate genes epigenetically regulated by H4K79la and H4K91la by intersecting through chromatin immunoprecipitation sequencing (ChIP-seq), RNA sequencing (RNA-seq), and TCGA-BRCA database. Pharmacological inhibition of glycolysis downregulated H4K79 and H4K91 lactylation and suppressed the expression of glycolytic genes, whereas treatment with sodium lactate exhibited the opposite effects. Additionally, E1A-binding protein p300 (P300) acted as lysine lactyltransferase to regulate H4K79la and H4K91la, and control the transcription and expression of downstream glycolytic genes in BC cells. The results revealed an intriguing positive feedback loop formed by glycolysis/H4K79la/H4K91la/glycolytic genes in BC, highlighting the relationship between metabolic reprogramming and epigenetic regulation. These findings provide new therapeutic targets for patients with BC.
H4K79 and H4K91 histone lactylation, newly identified lactylation sites enriched in breast cancer.
H4K79 和 H4K91 组蛋白乳酸化,是新发现的在乳腺癌中富集的乳酸化位点
阅读:5
作者:Liu Jiena, Zhao Liuying, Yan Meisi, Jin Shengye, Shang Lingmin, Wang Jianyu, Wang Qin, Zhao Shilu, Shen Zibo, Liu Tong, Wu Hao, Pang Da
| 期刊: | Journal of Experimental & Clinical Cancer Research | 影响因子: | 12.800 |
| 时间: | 2025 | 起止号: | 2025 Aug 23; 44(1):252 |
| doi: | 10.1186/s13046-025-03512-6 | 研究方向: | 肿瘤 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
