We have previously shown that implantation of testis cell aggregates under the back skin of immunodeficient mice results in de novo regeneration of testis tissue. We used this unique model to investigate the effects of epidermal growth factor (EGF) and glial cell-derived neurotrophic factor (GDNF) on testis cord development. Neonatal piglet testis cells were briefly (<1 h) exposed to either low (L: 0.02 μg/mL) or high (H: 2 μg/mL) doses of EGF, GDNF, or vehicle (control), before implantation in recipient mice. Randomly selected implants were removed from each mouse at 1, 2, 4, and 8 weeks post-implantation. GDNF-L implants showed increased testis cord development over time, and EGF-L implants had increased cross-sectional area. The ratio of regular cords decreased over time in EGF-H and GDNF-H implants and was replaced by a higher ratio of irregular cords in GDNF-H. EGF-L and GDNF-H implants were quickest to display rete testis-like structures. Overall, the lower dose of each growth factor was more effective than its higher dose in improving the implantation outcomes. This is the first comprehensive assessment of these key growth factors on de novo formation (regeneration) of testis tissue. LAY SUMMARY: In recent decades, testicular cancer rates have quadrupled in young men while sperm counts have dropped by half. Both conditions may be related to exposure of fetuses or infants to noxious substances causing disruption of normal testis development. To study the effects of any putative factor on testis development, we established an animal model of testis tissue regeneration. We collected newborn piglet testes after routine castration, used enzymes to completely dissociate testis cells, exposed the cells to two key growth factors (EGF or GDNF), and implanted the cells under the back skin of recipient mice, acting as live incubators. We then examined implant samples after 1, 2, 4, or 8 weeks and assessed testis regeneration. Overall, the high dose of each growth factor had adverse effects on the formation of normal testis. Therefore, this novel implantation model may also be used to study the effects of potentially harmful substances on testis development.
Brief exposure of neonatal testis cells to EGF or GDNF alters the regenerated tissue.
新生儿睾丸细胞短暂暴露于 EGF 或 GDNF 会改变再生组织
阅读:5
作者:Awang-Junaidi Awang Hazmi, Fayaz Mohammad Amin, Goldstein Savannah, Honaramooz Ali
| 期刊: | Reproduction and Fertility | 影响因子: | 3.400 |
| 时间: | 2022 | 起止号: | 2022 Feb 28; 3(1):39-56 |
| doi: | 10.1530/RAF-21-0057 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
