Pulmonary Toxicity of Long, Thick MWCNT and Very Long, Thin Carboxylated MWCNT Aerosols Following 28 Days Whole-Body Exposure.

长而粗的 MWCNT 和非常长而细的羧化 MWCNT 气溶胶在 28 天全身暴露后的肺毒性

阅读:5
作者:Guo Chang, Wright Matthew D, Buckley Alison, Laycock Adam, Berthing Trine, Vogel Ulla, Cosnier Frédéric, Gaté Laurent, Leonard Martin O, Smith Rachel
Pulmonary exposure to carbon nanotubes (CNTs) has been linked to a series of adverse respiratory effects in animal models, including inflammation, genotoxicity, fibrosis, and granuloma formation, the degree and characteristics of which are considered dependent upon the detailed physicochemical properties of the material as inhaled. To further explore the effect of variations in physicochemical properties on pulmonary effects, two different multi-walled CNTs (MWCNTs) were tested in vivo: a pristine MWCNT (pMWCNT) (NM-401) and a surface-modified MWCNT (MWCNT-COOH). Female Sprague-Dawley rats were whole-body exposed for 28 days to MWCNT aerosols (pMWCNT (0.5 and 1.5 mg/m(3)) and MWCNT-COOH (1.5 and 4.5 mg/m(3))) and followed up to 1 year post-exposure. The inhalation exposures resulted in relatively low estimated lung deposition. Bronchoalveolar lavage fluid (BALF) analysis indicated inflammation levels broadly consistent with deposited dose levels. Lung histopathology indicated that both MWCNTs produced very limited toxicological effects; however, global mRNA expression levels in lung tissue and BALF cytokines indicated different characteristics for the two MWCNTs. For example, pMWCNT but not MWCNT-COOH exposure induced osteopontin production, suggestive of potential pre-fibrosis/fibrosis effects linked to the higher aspect ratio aerosol particles. This is of concern as brightfield and enhanced darkfield microscopy indicated the persistence of pMWCNT fibres in lung tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。