M-Sec facilitates intercellular transmission of HIV-1 through multiple mechanisms

M-Sec 通过多种机制促进 HIV-1 细胞间传播

阅读:5
作者:Sameh Lotfi, Hesham Nasser, Osamu Noyori, Masateru Hiyoshi, Hiroaki Takeuchi, Yoshio Koyanagi, Shinya Suzu

Background

HIV-1 promotes the formation of tunneling nanotubes (TNTs) that connect distant cells, aiding cell-to-cell viral transmission between macrophages. Our recent study suggests that the cellular protein M-Sec plays a role in these processes. However, the timing, mechanism, and to what extent M-Sec contributes to HIV-1 transmission is not fully understood, and the lack of a cell line model that mimics macrophages has hindered in-depth analysis.

Conclusions

By taking advantage of useful features of U87 cells, we provided evidence that M-Sec mediates a rapid and efficient cell-cell transmission of HIV-1 at an early phase of infection by enhancing both TNT formation and cell motility.

Results

We found that HIV-1 increased the number, length and thickness of TNTs in a manner dependent on its pathogenic protein Nef and M-Sec in U87 cells, as observed in macrophages. In addition, we found that M-Sec was required not only for TNT formation but also motility of U87 cells, both of which are beneficial for viral transmission. In fact, M-Sec knockdown in U87 cells led to a significantly delayed viral production in both cellular and extracellular fractions. This inhibition was observed for wild-type virus, but not for a mutant virus lacking Nef, which is known to promote not only TNT formation but also migration of infected macrophages. Conclusions: By taking advantage of useful features of U87 cells, we provided evidence that M-Sec mediates a rapid and efficient cell-cell transmission of HIV-1 at an early phase of infection by enhancing both TNT formation and cell motility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。