The COVID-19 pandemic has underscored the need for fast and accurate epidemiology, particularly due to the high observed mutation frequency in SARS-CoV-2. This study aims to explore the evolution of SARS-CoV-2 through a global analysis. To facilitate a comparative analysis of temporal mutation data, we developed CovidTGI, a Shiny web application. CovidTGI provides insights into observed mutation frequencies and the temporal relationships among mutations across various clades in different geographical regions. Our tool relies on a database that includes 2 million samples obtained from the National Center for Biotechnology Information (NCBI), along with 500 in-house Sicilian samples collected between May 2021 and June 2022. From this smaller group of samples, we identified key variants that are prevalent within a specific clade. Our tool is designed to study the evolution of SARS-CoV-2, which clearly follows a complex trajectory. This complexity highlights the necessity for sophisticated tools like CovidTGI to understand and track the evolution of this virus.
CovidTGI: A tool to investigate the temporal genetic instability of SARS-CoV-2 variants.
CovidTGI:一种用于研究SARS-CoV-2变异株时间遗传不稳定性的工具
阅读:4
作者:Privitera Grete Francesca, Musso Nicolò, Micale Giovanni, Bonomo Carmelo, Alaimo Salvatore, Bivona Dalida, Bonacci Paolo Giuseppe, Scalia Guido, Stefani Stefania, Pulvirenti Alfredo
| 期刊: | iScience | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 28; 28(4):112315 |
| doi: | 10.1016/j.isci.2025.112315 | 研究方向: | 炎症/感染 |
| 疾病类型: | 新冠 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
