Artificial intelligence-driven prediction and validation of blood-brain barrier permeability and absorption, distribution, metabolism, excretion profiles in natural product research laboratory compounds.

利用人工智能技术预测和验证天然产物研究实验室化合物的血脑屏障通透性和吸收、分布、代谢、排泄情况

阅读:6
作者:Yang Jai-Sing, Huang Eddie Tc, Liao Ken Yk, Bau Da-Tian, Tsai Shih-Chang, Chen Chao-Jung, Chen Kuan-Wen, Liu Ting-Yuan, Chiu Yu-Jen, Tsai Fuu-Jen
INTRODUCTION: Our previous research demonstrated that a large language model (LLM) based on the transformer architecture, specifically the MegaMolBART encoder with an XGBoost classifier, effectively predicts the blood-brain barrier (BBB) permeability of compounds. However, the permeability coefficients of compounds that can traverse this barrier remain unclear. Additionally, the absorption, distribution, metabolism, and excretion (ADME) characteristics of substances obtained from the Natural Product Research Laboratory (NPRL) at China Medical University Hospital (CMUH) have not yet been determined. OBJECTIVES: The study aims to investigate the pharmacokinetic ADME properties and BBB permeability coefficients of NPRL compounds. MATERIALS AND METHODS: A combined model using a transformer-based MegaMolBART encoder and XGBoost classifier was employed to predict BBB permeability. Machine learning (ML) tools from Discovery Studio were used to assess the ADME characteristics of the NPRL compounds. The CCK-8 assay was conducted to evaluate the cytotoxic effects of NPRL compounds on bEnd.3 brain endothelial cells after exposure to 10 μg/mL of the compounds. We assessed the permeability coefficient by subjecting bEnd.3 cell monolayers to the test compounds and measuring the permeability of FITC-dextran. RESULTS: There were 4956 compounds that could cross the blood-brain barrier (BBB+) and 2851 that could not (BBB-) in the B3DB dataset that was utilized for training. A total of 2461 BBB+ and 2184 BBB- compounds were used in the NPRL-CMUH dataset for testing. The permeability coefficient of temozolomide (TMZ) and 21 other BBB + compounds exceeded 10 × 10(-7) cm/s. Computational analysis revealed that NPRL compounds exhibited a variety of ADME characteristics. CONCLUSION: Computer-based predictions for the NPRL of CMUH compounds regarding their capacity to traverse the BBB are verified by the findings. Artificial intelligence (AI) prediction models have effectively identified the potential ADME characteristics of various compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。