Heparanase (HPSE), a glycoside hydrolase that cleaves heparan sulfate chains, plays a crucial role in cancer progression by remodeling the extracellular matrix and facilitating tumor metastasis. This study employed a computational design approach to develop novel HPSE inhibitors using aminoglycoside paromomycin and neomycin analogs. These analogs feature a defined N-sulfation sequence combined with either charged or hydrophobic groups. Initial docking screenings indicated that hydrophobic-capped ligands exhibit binding energies comparable to the free hydroxyl ligands, despite displaying lower overall binding efficiencies. Molecular dynamics simulations revealed that these hydrophobic-capped ligands adopt a folded conformation, with the saccharide moiety anchored in the enzyme's active site and the hydrophobic aromatic groups stabilizing the interaction. This conformation exposes the hydrophobic groups to the solvent, potentially enhancing inhibitory potency by increasing ligand retention within the active site. Further analysis revealed that the hydrophobic capped ligands exhibited a higher ligand binding stability as shown by a lower RMSD during the MD simulation. Experimental validation corroborated the computational findings, demonstrating that the introduction of hydrophobic aromatic groups led to a >100-fold increase in inhibitory potency, with IC(50) values in the low nanomolar range. These results suggest that simultaneously targeting the charged and hydrophobic pockets of HPSE could yield more potent inhibitors, offering a promising strategy for future cancer therapeutics.
From Docking and Molecular Dynamics to Experimental Discovery: Exploring the Hydrophobic Landscapes of Heparanase to Design Potent Inhibitors.
从分子对接和分子动力学到实验发现:探索肝素酶的疏水景观以设计强效抑制剂
阅读:4
作者:Abdulsalam Hawau, Hix Mark A, Philip Livia, Singh Kartikey, Walker Alice R, Nguyen Hien M
| 期刊: | Journal of Chemical Information and Modeling | 影响因子: | 5.300 |
| 时间: | 2025 | 起止号: | 2025 Jul 14; 65(13):6899-6912 |
| doi: | 10.1021/acs.jcim.5c00371 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
