Gut microbial transcytosis induced by tumor necrosis factor-like 1A-dependent activation of a myosin light chain kinase splice variant contributes to IBD.

肿瘤坏死因子样 1A 依赖性肌球蛋白轻链激酶剪接变体的激活所诱导的肠道微生物胞吞作用是 IBD 的成因之一

阅读:4
作者:Pai Yu-Chen, Weng Li-Ting, Wei Shu-Chen, Wu Li-Ling, Shih David Q, Targan Stephen R, Turner Jerrold R, Yu Linda Chia-Hui
Inflammatory bowel disease (IBD) is characterized by abnormal host-microbe interactions. Proinflammatory cytokine IFNγ and a novel TNF superfamily member, TL1A, have been implicated in epithelial barrier dysfunction. The divergent regulatory mechanisms of transcellular versus paracellular hyperpermeability remain poorly understood. Intestinal epithelia express two splice variants of long myosin light chain kinase (MLCK), of which the full-length MLCK1 differ from the shorter isoform MLCK2 by a Src kinase phosphorylation site. The aim was to investigate the roles of MLCK splice variants in gut barrier defects under proinflammatory stress. Upregulated expression of TL1A, IFNγ, and two MLCK variants was observed in human IBD biopsy specimens. The presence of intraepithelial bacteria preceded tight junction (TJ) damage in dextran sodium sulfate-treated and TL1A-transgenic mouse models. Lack of barrier defects was observed in long MLCK(-/-) mice. TL1A induced MLCK-dependent terminal web (TW) contraction, brush border fanning, and transepithelial bacterial internalization. The bacterial taxa identified in the inflamed colonocytes included Escherichia, Enterococcus, Staphylococcus,and Lactobacillus. Recombinant TL1A and IFNγ at low doses induced PI3K/Akt/MLCK2-dependent bacterial endocytosis, whereas high-dose IFNγ caused TJ opening via the iNOS/Src/MLCK1 axis. Bacterial internalization was recapitulated in MLCK-knockout cells individually expressing MLCK2 but not MLCK1. Immunostaining showed different subcellular sites of phosphorylated MLC localized to the TJ and TW in the MLCK1- and MLCK2-expressing cells, respectively. In conclusion, proinflammatory cytokines induced bacterial influx through transcellular and paracellular routes via divergent pathways orchestrated by distinct MLCK isoforms. Bacterial transcytosis induced by TL1A may be an alternative route causing symptom flares in IBD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。