Early blood-brain barrier (BBB) disruption resulting from excessive neurovascular proteolysis by matrix metalloproteinases (MMPs) is closely associated with hemorrhagic transformation events in ischemic stroke. We have shown that normobaric hyperoxia (NBO) treatment reduces MMP-9 increase in the ischemic brain. The aim of this study was to determine whether NBO could attenuate MMP-9-mediated early BBB disruption following ischemic stroke. Rats were exposed to NBO (95% O(2)) or normoxia (30% O(2)) during 90-min middle cerebral artery occlusion, followed by 3-hour reperfusion. NBO-treated rats showed a significant reduction in Evan's blue extravasation in the ischemic hemisphere compared with normoxic rats. Topographically, Evan's blue leakage was mainly seen in the subcortical regions including the striatum, which was accompanied by increased gelatinolytic activity and reduced immunostaining for tight-junction protein, occludin. Increased gelatinolytic activities and occludin protein loss were also observed in isolated ischemic microvessels. Gel gelatin zymography identified that MMP-9 was the main enzymatic source in the cerebral microvessels. Incubation of brain slices or isolated microvessels with purified MMP-9 revealed specific degradation of occludin. Inhibition of MMP-9 by NBO or MMP-inhibitor, BB1101, significantly reduced occludin protein loss in ischemic microvessels. These results suggest that NBO attenuates early BBB disruption, and inhibition of MMP-9-mediated occludin degradation is an important mechanism for this protection.
Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia.
常压高氧通过抑制局灶性脑缺血中 MMP-9 介导的闭合蛋白降解来减轻早期血脑屏障破坏
阅读:4
作者:Liu Wenlan, Hendren Jill, Qin Xu-Jun, Shen Jiangang, Liu Ke Jian
| 期刊: | Journal of Neurochemistry | 影响因子: | 4.000 |
| 时间: | 2009 | 起止号: | 2009 Feb;108(3):811-20 |
| doi: | 10.1111/j.1471-4159.2008.05821.x | 研究方向: | 神经科学 |
| 疾病类型: | 血脑屏障 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
