Glioblastoma multiforme (GBM) represents an extremely chemoresistant tumour type. Here, authors analysed the immunophenotype of GBM tumours by flow cytometry and correlated the immunophenotypic characteristics with sensitivity to chemotherapy. The expression of selected neural and non-neural differentiation markers including A2B5, CD34, CD45, CD56, CD117, CD133, EGFR, GFAP, Her-2/neu, LIFR, nestin, NGFR, Pgp and vimentin was analysed by flow cytometry in eleven GBM (WHO gr.IV) patients. The sensitivity of tumour cells to a panel of chemotherapeutic agents was tested by the MTT assay. All tumours were positive for A2B5, CD56, nestin and vimentin. CD133, EGFR, LIFR, NGFR and Pgp were expressed only by minor tumour cell subpopulations. CD34, CD45, CD117, GFAP and Her-2/neu were constantly negative. Direct correlations were found between the immunophenotypic markers and chemosensitivity: A2B5 vs lomustine (r(2) = 0.642, P = 0.033), CD56 vs cisplatin (r(2) = 0.745, P = 0.013), %Pgp(+) vs vincristine (r(2) = 0.846, P = 0.008), and %NGFR(+) vs daunorubicine (r(2) = 0.672, P = 0.047) and topotecan (r(2) = 0.792, P = 0.011). In contrast, inverse correlations were observed between: EGFR vs paclitaxel (r(2) = -0.676, P = 0.046), CD133 vs dacarbazine (r(2) = -0.636, P = 0.048) and LIFR vs daunorubicine (r(2) = -0.878, P = 0.004). Finally, significant associations were also found among sensitivities to different chemotherapeutic agents and among different immunophenotypic markers. In conclusion, histopathologically identical GBM tumours displayed a marked immunophenotypic heterogeneity. The expression of A2B5, CD56, NGFR and Pgp appeared to be associated with chemoresistance whereas CD133, EGFR and LIFR expression was characteristic of chemosensitive tumours. We suggest that flow cytometric imunophenotypic analysis of GBM may predict chemoresponsiveness and help to identify patients who could potentially benefit from chemotherapy.
Flow cytometry analysis of neural differentiation markers expression in human glioblastomas may predict their response to chemotherapy.
通过流式细胞术分析人类胶质母细胞瘤中神经分化标志物的表达,可以预测其对化疗的反应
阅读:7
作者:Balik Vladimir, Mirossay Peter, Bohus Peter, Sulla Igor, Mirossay Ladislav, Sarissky Marek
| 期刊: | Cellular and Molecular Neurobiology | 影响因子: | 4.800 |
| 时间: | 2009 | 起止号: | 2009 Sep;29(6-7):845-58 |
| doi: | 10.1007/s10571-009-9366-6 | 种属: | Human |
| 方法学: | FCM | 研究方向: | 神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
