BACKGROUND: Factorial design is a simple, yet elegant method to investigate the effect of multiple factors and their interaction on a specific response simultaneously. Hence, this type of study design reaches the best optimization conditions of a process. Although the interaction between the variables is widely prevalent in cell culture procedures, factorial design per se is infrequently utilized in improving cell culture output. Therefore, we aim to optimize the experimental conditions for generating mature bone marrow-derived dendritic cells (BMDCs). Two different variables were investigated, including the concentrations of the inducing factors and the starting density of the bone marrow mononuclear cells. In the current study, we utilized the design of experiments (DoE), a statistical approach, to systematically assess the impact of factors with varying levels on cell culture outcomes. Herein, we apply a two-factor, two-level (2(2)) factorial experiment resulting in four conditions that are run in triplicate. The two variables investigated here are cytokines combinations with two levels, granulocyte-macrophage colony-stimulating factor (GM-CSF) alone or with interleukin-4 (IL4). The other parameter is cell density with two different concentrations, 2âÃâ10(6) and 4âÃâ10(6) cells/mL. Then, we measured cell viability using the trypan blue exclusion method, and a flow cytometer was used to detect the BMDCs expressing the markers FITC-CD80, CD86, CD83, and CD14. BMDC marker expression levels were calculated using arbitrary units (AU) of the mean fluorescence intensity (MFI). RESULTS: The current study showed that the highest total viable cells and cells yield obtained were in cell group seeded at 2âÃâ10(6) cells/mL and treated with GM-CSF and IL-4. Importantly, the expression of the co-stimulatory molecules CD83 and CD80/CD86 were statistically significant for cell density of 2âÃâ10(6) cells/mL (Pâ<â0.01, two-way ANOVA). Bone marrow mononuclear cells seeded at 4âÃâ10(6) in the presence of the cytokine mix less efficiently differentiated and matured into BMDCs. Statistical analysis via two-way ANOVA revealed an interaction between cell density and cytokine combinations. CONCLUSION: The analysis of this study indicates a substantial interaction between cytokines combinations and cell densities on BMDC maturation. However, higher cell density is not associated with optimizing DC maturation. Notably, applying DoE in bioprocess designs increases experimental efficacy and reliability while minimizing experiments, time, and process costs.
Optimizing the generation of mature bone marrow-derived dendritic cells in vitro: a factorial study design.
优化体外成熟骨髓来源树突状细胞的生成:一项析因研究设计
阅读:5
作者:Alotaibi Najla, Aldahlawi Alia, Zaher Kawther, Basingab Fatemah, Alrahimi Jehan
| 期刊: | Journal of Genetic Engineering and Biotechnology | 影响因子: | 2.800 |
| 时间: | 2023 | 起止号: | 2023 Nov 29; 21(1):144 |
| doi: | 10.1186/s43141-023-00597-4 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
