A pilot investigation of the association between HIV-1 Vpr amino acid sequence diversity and the tryptophan-kynurenine pathway as a potential mechanism for neurocognitive impairment.

一项关于 HIV-1 Vpr 氨基酸序列多样性与色氨酸-犬尿氨酸途径之间关联性的初步研究,旨在探讨其作为神经认知障碍潜在机制的可能性

阅读:7
作者:Asia Levanco Keegan, Van Vuren Esmé Jansen, Lindeque Zander, Williams Monray Edward
HIV infection compromises both the peripheral and central immune systems due to its pathogenic and neuropathogenic features. The mechanisms driving HIV-1 pathogenesis and neuropathogenesis involve a series of events, including metabolic dysregulation. Furthermore, HIV-subtype-specific variations, particularly alterations in the amino acid sequences of key viral proteins, are known to influence the severity of clinical outcomes in people living with HIV. However, the impact of amino acid sequence variations in specific viral proteins, such as Viral protein R (Vpr), on metabolites within the Tryptophan (Trp)-kynurenine (Kyn) pathway in people living with HIV remains unclear. Our research aimed to explore the relationship between variations in the Vpr amino acid sequence (specifically at positions 22, 41, 45, and 55, as these have been previously linked to neurocognitive function) and peripheral Trp-Kyn metabolites. Additionally, we sought to clarify the systems biology of Vpr sequence variation by examining the link between Trp-Kyn metabolism and peripheral inflammation, as a neuropathogenic mechanism. In this preliminary study, we analyzed a unique cohort of thirty-two (n = 32) South African cART naïve people living with HIV. We employed Sanger sequencing to ascertain blood-derived Vpr amino acid sequence variations and a targeted LC-MS/MS metabolomics platform to assess Trp-Kyn metabolites, such as Trp, Kyn, kynurenic acid (KA), and quinolinic acid (QUIN). Particle-enhanced turbidimetric assay and Enzyme-linked immunosorbent assays were used to measure immune markers, hsCRP, IL-6, suPAR, NGAL and sCD163. After applying Bonferroni corrections (p =.05/3) and adjusting for covariates (age and sex), only the Vpr G41 and A55 groups was nearing significance for higher levels of QUIN compared to the Vpr S41 and T55 groups, respectively (all p =.023). Multiple regression results revealed that Vpr amino acid variations at position 41 (adj R(2) = 0.049, β = 0.505; p =.023), and 55 (adj R(2) = 0.126, β = 0.444; p =.023) displayed significant associations with QUIN after adjusting for age and sex. Lastly, the higher QUIN levels observed in the Vpr G41 group were found to be correlated with suPAR (r =.588, p =.005). These results collectively underscore the importance of specific Vpr amino acid substitutions in influencing QUIN and inflammation (specifically suPAR levels), potentially contributing to our understanding of their roles in the pathogenesis and neuropathogenesis of HIV-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。