BACKGROUND: The developmental abnormality spina bifida is hallmarked by missing tissues (e.g. skin) and exposure of the spinal cord to the amniotic fluid, which can negatively impact neurological development. Surgical closure of the skin in utero limits neurological damage, but in large defects this results in scarring and contractures. Stimulating skin regeneration in utero would greatly benefit treatment outcome. Previously, we demonstrated that a porous type I collagen (COL) scaffold, functionalized with heparin (HEP), fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF) (COL-HEP/GF) improved pre- and postnatal skin regeneration in a fetal sheep full thickness wound model. In this study we uncover the early events associated with enhanced skin regeneration. METHODS: We investigated the gene expression profiles of healing fetal skin wounds two weeks after implantation of the COL(-HEP/GF) scaffolds. Using laser dissection and microarrays, differentially expressed genes (DEG) were identified in the epidermis and dermis between untreated wounds, COL-treated wounds and wounds treated with COL-HEP/GF. Biological processes were identified using gene enrichment analysis and DEG were clustered using protein-protein-interaction networks. RESULTS: COL-HEP/GF influences various interesting biological processes involved in wound healing. Although the changes were modest, using protein-protein-interaction networks we identified a variety of clustered genes that indicate COL-HEP/GF induces a tight but subtle control over cell signaling and extracellular matrix organization. CONCLUSION: These data offer a novel perspective on the key processes involved in (fetal) wound healing, where a targeted and early interference during wound healing can result in long-term enhanced effects on skin regeneration.
Collagen-Heparin-FGF2-VEGF Scaffolds Induce a Regenerative Gene Expression Profile in a Fetal Sheep Wound Model.
胶原蛋白-肝素-FGF2-VEGF支架在胎羊伤口模型中诱导再生基因表达谱
阅读:6
作者:Gansevoort Merel, Oostendorp Corien, Bouwman Linde F, Tiemessen Dorien M, Geutjes Paul J, Feitz Wout F J, van Kuppevelt Toin H, Daamen Willeke F
| 期刊: | Tissue Engineering and Regenerative Medicine | 影响因子: | 4.100 |
| 时间: | 2024 | 起止号: | 2024 Dec;21(8):1173-1187 |
| doi: | 10.1007/s13770-024-00667-9 | 种属: | Sheep |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
