Spontaneous baroreflex sensitivity is attenuated in male UCD-type 2 diabetes mellitus rats: A link between metabolic and autonomic dysfunction.

雄性 UCD 型 2 型糖尿病大鼠的自发性压力反射敏感性减弱:代谢功能障碍与自主神经功能障碍之间的联系

阅读:6
作者:Samora Milena, Huo Yu, McCuller Richard K, Chidurala Suchit, Stanhope Kimber L, Havel Peter J, Stone Audrey J, Harrison Michelle L
Patients with type 2 diabetes mellitus (T2DM) have impaired arterial baroreflex function, which may be linked to the co-existence of obesity. However, the role of obesity and its related metabolic impairments on baroreflex dysfunction in T2DM is unknown. This study aimed to investigate the role of visceral fat and adiponectin, the most abundant cytokine produced by adipocytes, on baroreflex dysfunction in T2DM rats. Experiments were performed in adult male UCD-T2DM rats assigned to the following experimental groups (n = 6 in each): prediabetic (Pre), diabetes-onset (T0), 4 weeks after onset (T4), and 12 weeks after onset (T12). Age-matched healthy Sprague-Dawley rats were used as controls. Rats were anesthetized and blood pressure was directly measured on a beat-to-beat basis to assess spontaneous baroreflex sensitivity (BRS) using the sequence technique. Dual-energy X-ray absorptiometry (DEXA) was used to assess body composition. Data are presented as mean ± SD. BRS was significantly lower in T2DM rats compared with controls at T0 (T2D: 3.7 ± 3.2 ms/mmHg vs Healthy: 16.1 ± 8.4 ms/mmHg; P = 0.01), but not at T12 (T2D: 13.4 ± 8.1 ms/mmHg vs Healthy: 9.2 ± 6.0 ms/mmHg; P = 0.16). T2DM rats had higher visceral fat mass, adiponectin, and insulin concentrations compared with control rats (all P < 0.01). Changes in adiponectin and insulin concentrations over the measured time-points mirrored one another and were opposite those of the BRS in T2DM rats. These findings demonstrate that obesity-related metabolic impairments may contribute to an attenuated spontaneous BRS in T2DM, suggesting a link between metabolic and autonomic dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。