Exploring the Association Between Immune Cell Phenotypes and Osteoporosis Mediated by Inflammatory Cytokines: Insights from GWAS and Single-Cell Transcriptomics.

探索炎症细胞因子介导的免疫细胞表型与骨质疏松症之间的关联:来自 GWAS 和单细胞转录组学的见解

阅读:4
作者:Kuang Shouxiang, Ma Xiaoqing, Sun Lipeng, Wang Chang, Li Yang, Wang Guodong, Sun Jianmin, Zhou Fengge, Zhang Chenggui
BACKGROUND: Patients with osteoporosis experience increased fracture risk and decreased quality of life, which pose significant health burdens and financial challenges. Despite established links between immune cell phenotypes and inflammatory cytokines and osteoporosis, the exact mechanism involved remains unclear, and further understanding is needed for effective prevention and treatment. METHODS: Here, we performed a two-sample Mendelian randomization (MR) study to estimate the causal effects between 731 immune cell types, 91 and 41 inflammatory factors (which may have some overlap), and 5 types of osteoporosis. In subsequent mediation MR analysis, we assessed whether these inflammatory cytokines mediate the causal relationship between immune cell phenotypes and osteoporosis. Additionally, colo- calization analysis was performed using Bayesian colocalization. Single-cell transcriptomic analysis was performed using datasets from osteoporosis patients available in the Gene Expression Omnibus (GEO) database. Subsequently, single-cell sequencing analysis was performed, including dimensionality reduction, clustering, and pathway enrichment, to investigate the underlying mechanisms. Finally, to confirm the critical role of IgD⁺CD24⁺ B cells and IL-17C in osteoporosis, we established vivo dexamethasone-induced osteoporosis model. Micro-CT was used to assess the effectiveness of model establishment. Flow cytometry was performed to determine the proportion of IgD⁺CD24⁺ B cells within lymphocytes in the blood. ELISA and Western blotting were used to measure IL-17C levels in serum and bone tissue. Immunohistochemistry was conducted to evaluate the expression of IL-17C in bone tissue. RESULTS: This study found that 32 immune cell phenotypes and 38 inflammatory cytokines were significantly associated with osteoporosis. Mediation analysis indicated that IgD+ CD24+ B cells exacerbated the risk of osteoporosis by influencing the levels of interleukin-17C (IL-17C). The mediated effect was 0.07837, accounting for 15.5% of the total effect. Single-cell transcriptome analysis supported that IgD+ CD24+ B cells play a key role in musculoskeletal-related pathways in osteoporosis patients. Additionally, we have demonstrated the significant involvement of IgD⁺CD24⁺ B cells and IL-17C in the osteoporosis disease model. CONCLUSION: Inflammatory cytokines play a crucial role in the pathogenesis of immunity-related osteoporosis. In particular, IgD+ CD24+ B cell %lymphocyte increase the risk of osteoporosis by modulating the levels of interleukin-17C. Our results provide evidence to support the link between immunity and osteoporosis and offer new therapeutic strategies for targeting inflammatory pathways in immune-mediated osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。