As an emerging endocrine-disrupting agent and structural analog of bisphenol A (BPA), bisphenol B (BPB) raises significant concerns due to its potential to induce male reproductive toxicity. Despite its presence in maternal bodily fluids, the effects of BPB exposure on the reproductive system and its mechanisms in adult male offspring are poorly understood. By establishing a maternal BPB exposure model in mice, we found that the exposure reduced the relative weights of seminal vesicles and preputial glands, decreased the thickness of the seminiferous epithelium, enlarged the lumen area of seminiferous tubules, and lowered testosterone concentration and synthesis, as well as sperm count in 10-week-old male offspring. Bioinformatic analyses revealed that the differentially expressed genes were significantly associated with major histocompatibility complex I (MHC I)-mediated immunological processes, including immune system processes, antigen processing and presentation of exogenous peptide antigens via MHC class I, and interleukin-2 production. Importantly, molecular docking proposed a potential mechanistic model wherein BPB bound to estrogen receptor α (ERα) suppressed its testicular expression and triggered MHC class I gene overexpression, potentially promoting macrophage infiltration, CD4+/CD8+ T cell activation, and pro-inflammatory cytokine production. Our findings provide critical insights into the adverse effects of maternal BPB exposure on male reproductive development, suggesting that impairments in testicular morphology and spermatogenesis may be attributed to MHC I-mediated immunological responses and hormonal imbalances resulting from inhibited ERα signaling. These results underscore not only the toxicological risks associated with BPB but also potential therapeutic targets for mitigating male reproductive dysfunction.
Prenatal Bisphenol B Exposure Induces Adult Male Offspring Reproductive Dysfunction via ERα Inhibition-Triggered MHC I-Mediated Testicular Immunological Responses.
产前双酚 B 暴露通过 ERα 抑制触发的 MHC I 介导的睾丸免疫反应诱发成年雄性后代生殖功能障碍
阅读:6
作者:Chen Nannan, Li Xiaotian, Zhou Shenrui, Peng Xin, Xue Senlin, Liu Yuetong, Jiang Tingwang, Yan Wei
| 期刊: | Toxics | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 May 22; 13(6):423 |
| doi: | 10.3390/toxics13060423 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
