Zika virus (ZIKV) is spread by mosquito bites and is unique among known flaviviruses for being able to cause microcephaly. Entry factors for ZIKV are incompletely understood, but phosphatidylserine (PS) receptors, including the TAM (Tyro3, AXL, and Mer) and TIM (T-cell Ig mucin) families, can serve as cofactors for flavivirus entry in a cell type-specific manner. We identify AXL as the top hit in a CRISPR/Cas9 genome-wide screen in human glioblastoma cells and establish a definitive role of AXL, but not TYRO3 or MerTK, for ZIKV infection. Additionally, Spondweni virus also shows AXL dependency, while dengue virus infection is not affected by AXL knockout. Passage of ZIKV in AXL knockout (KO) cells generated a mutant virus capable of infection via AXL-independent mechanisms, and multiple independent selections identified a common mutation, H83R, in the prM coding region of the ZIKV genome. The mutant virus exhibits an increased infectivity rate in AXL KO cells as compared to wild-type ZIKV and is dependent upon the single H83R mutation. The mutant virus' ability to infect cells in an AXL-independent manner is unrelated to interferon signaling antagonism but likely pertains to a change in virus maturation that leads to a structural disturbance of the ZIKV virion. Our study provides evidence for a potential mechanism linking the viral structural proteins and host PS receptor usage during flavivirus infection.IMPORTANCEA major challenge in elucidating the mechanism of Zika virus (ZIKV) pathogenesis is the multitude of cell types it infects with distinct requirements. The role of phosphatidylserine (PS) receptors in ZIKV infection is cell type-specific, and the controversy surrounds their function in flavivirus entry. Here, we establish a definitive requirement of AXL for infection of human glioblastoma cells by both Zika and Spondweni virus. We then identified a single amino acid mutation (H83R) in the prM protein of ZIKV that allowed AXL-independent infection of these cells. The H83R-mediated escape of AXL requirement is independent of interferon (IFN) signaling suppression by AXL; instead, the mutation has the potential to disrupt the virus assembly and virion structure. This study reveals a previously unknown connection between the PS receptor usage and the flavivirus prM gene, which can guide detailed molecular mechanism studies of the interplay between virion assembly and virus entry.
A single mutation in the PrM gene of Zika virus determines AXL dependency for infection of human neural cells
寨卡病毒PrM基因的单个突变决定了其感染人类神经细胞对AXL的依赖性。
阅读:4
作者:Renu Khasa ,Sarah C Ogden ,Yuqing Wang ,Zongiun Mou ,Anna D Metzler ,Xuping Xie ,Xinghong Dai ,Hengli Tang
| 期刊: | Journal of Virology | 影响因子: | 4.000 |
| 时间: | 2025 | 起止号: | 2025 Apr 15;99(4):e0187324. |
| doi: | 10.1128/jvi.01873-24 | 种属: | Human |
| 研究方向: | 神经科学、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
