Mannose-Glycated Metal-Phenolic Microcapsules Orchestrate Phenotype Switch of Macrophages for Boosting Tumor Immunotherapy.

甘露糖基化金属酚类微胶囊调控巨噬细胞表型转换以增强肿瘤免疫疗法

阅读:9
作者:Tan Xin, Sheng Renwang, Li Weikun, Tao Yinghua, Liu Zonghao, Yang Ning, Hashmi Syeda Safia, Feng Feiling, Liu Fangzhou, Ge Liqin
Microcapsules are advancing in immunotherapy, with both their core and shell being capable of loading immunoregulatory substances. Notably, microcapsules with intrinsic bioactivities can more directly modulate the immune microenvironment, while current research in this area remains scarce. Herein, immunomodulatory metal-phenolic microcapsules (mMPMs) is developed through the one-step assembly of dopamine-modified hyaluronic acid (HADA) and Fe(III) onto mannose-glycated bovine serum albumin microbubbles (Man-BSA MBs). Specifically, Man-BSA formed during the early stages of the Maillard reaction is sonicated to produce microbubbles as templates for capsule preparation. Subsequently, HADA is rapidly coated on the templates and coordinates with Fe(III) to form microcapsules after air escapes from MBs. Mass spectrometry analysis identifies abundant lysine glycation sites on Man-BSA, with the highest glycation site percentage reaching 94.88%. Man-BSA within mMPMs effectively promotes macrophage internalization, induces the accumulation of pro-inflammatory mediators, and thereby results in the M1 polarization of macrophages, as further corroborated by proteomic analysis. Consequently, the compelling anti-tumor effects of mMPMs are demonstrated both in vitro and in vivo. Overall, this work presents an immunomodulatory microcapsule that activates pro-inflammatory phenotype macrophages, which is a promising microcarrier to improve immunotherapeutic effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。