Cross-tissue MiRNA profiling of extracellular vesicles and PBMCs from amyotrophic lateral sclerosis patients.

肌萎缩侧索硬化症患者细胞外囊泡和外周血单核细胞的跨组织 miRNA 分析

阅读:12
作者:Dragoni Francesca, Gerlando Rosalinda Di, Diamanti Luca, Rizzo Bartolo, Bordoni Matteo, Scarian Eveljn, Viola Camilla, Cerchia Giovanni, Zucca Susanna, Pansarasa Orietta, Gagliardi Stella
RNA-mediated toxicity, which can be controlled by alteration of gene expression, is considered a key event in Amyotrophic Lateral Sclerosis (ALS). Transcriptomic deregulation of miRNAs expression can spread via "horizontal" RNA transfer through extracellular vesicles (EVs) to act in conjunction with proteins, leading to changes in mRNA, which can provide early signals to indicate forthcoming neuropathological changes in the brain. The aim of this work is to compare expression profiles (obtained by miRNA-seq) from different tissues to highlight commonly expressed and tissue-specific miRNAs. miRNA species from plasma EVs were correlated with miRNA profiles obtained from peripheral blood mononuclear cells (PBMCs). Each tissue from ALS patients was compared to controls, revealing 159 deregulated (DE) miRNAs in Exosomes (EXOs), 247 DE miRNAs in PBMCs and 162 DE miRNAs in Microvesicles (MVs). Next, data were filtered to include only miRNAs expressed in disease samples (not in healthy subjects), to reduce the number of tissue- and ALS- specific miRNAs (EXO n = 22, MV = 11, PBMCs n = 8). We identified specific miRNAs and pathways related to each tissue. Interestingly, in PBMCs we found mainly neuro-linked pathways, such as neurotransmitters, brain and neuron development, while in EXOs, we found miRNAs implicated in MAPK and ERB signaling. In contrast, the altered pathways in MVs were not specific. This study shows that the composition of small RNA differs significantly between blood cells and its respective EVs fraction. Differentially expressed miRNAs can target definite transcripts in different cellular and molecular fractions. It is evident that, in terms of miRNAs cargo, MVs are not specific to ALS. Therefore, future studies will focus on the interaction between cells and EXOs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。