The miR-6779/XIAP axis alleviates IL-1β-induced chondrocyte senescence and extracellular matrix loss in osteoarthritis.

miR-6779/XIAP 轴可减轻骨关节炎中 IL-1β 诱导的软骨细胞衰老和细胞外基质丢失

阅读:7
作者:Li Zongchao, Dai Aonan, Fang Xiaoxiang, Tang Kexing, Chen Kun, Gao Peng, Su Jingyue, Chen Xin, Yang Shengwu, Deng Zhenhan, Li Liangjun
BACKGROUND: Osteoarthritis (OA) is a long-term degenerative joint disease worsening over time. Aging and chondrocyte senescence contribute to OA progression. MicroRNAs have been confirmed to regulate different cellular processes. They contribute to OA pathology and may help to identify novel biomarkers and therapies for OA. METHODS: This study used bioinformatics and experimental investigations to analyze and validate differentially expressed miRNAs in OA that might affect chondrocyte apoptosis and senescence. RESULTS: miR-6779 was found to be significantly down-regulated in OA. Seventy-six of the predicted and miR-6779 targeted genes and the OA-associated disease genes overlapped, and these were enriched in cell proliferation, cell apoptosis, and cell cycle. miR-6779 overexpression remarkably attenuated IL-1β effects on chondrocytes by reducing MMP3 and MMP13 levels, promoting cell apoptosis, suppressing cell senescence, and increasing caspase-3, caspase-9 and reducing P16 and P21 levels. miR-6779 targeted inhibition of X-linked inhibitor of apoptosis protein (XIAP) expression. XIAP knockdown partially improved IL-1β-induced chondrocyte senescence and dysfunction. Lastly, when co-transfected with a miR-6779 agomir, the XIAP overexpression vector partially attenuated the effects of miR-6779 overexpression on chondrocytes; miR-6779 improved IL-1β-induced senescence and dysfunction in chondrocytes through targeting XIAP. CONCLUSION: miR-6779 is down-regulated, and XIAP is up-regulated in OA cartilage and IL-1β-treated chondrocytes. miR-6779 inhibits XIAP expression, thereby promoting senescent chondrocyte cell apoptosis and reducing chondrocyte senescence and ECM loss through XIAP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。