Dual Role of CRABP2 in Colorectal Cancer: Oncogenesis via Nuclear RB1 and Cytoplasmic AFG3L2/SLC25A39 Axis, While Limiting Liver Metastasis through Cytoplasmic AFG3L2/PINK1/Parkin-Mediated Mitophagy.

CRABP2 在结直肠癌中的双重作用:通过核 RB1 和细胞质 AFG3L2/SLC25A39 轴促进肿瘤发生,同时通过细胞质 AFG3L2/PINK1/Parkin 介导的线粒体自噬限制肝转移

阅读:5
作者:Tian Chuanxin, Yang Sheng, Zhang Chuan, Zhu Renzhong, Chen Chen, Wang Xiaowei, Zhang Dongsheng, Sun Qingyang, Xu Hengjie, Nie Hongxu, Zhang Yue, Ji Dongjian, Tang Junwei, Jin Kangpeng, Sun Yueming
Colorectal cancer (CRC) progression and metastasis involve numerous regulatory factors. Among these, cellular retinoic acid-binding protein 2 (CRABP2) has been implicated as both a tumor activator and suppressor. Here, it is aimed to clarify the role of CRABP2 in CRC growth and metastasis and explore the underlying molecular mechanisms mediating its cellular functions. Using both in vitro and in vivo models, including a colonocyte-specific CRABP2 conditional knockout mouse model (Crabp2(ΔIEC)) and a subcutaneous tumorigenesis assay in BALB/c nude mice, it is shown that nuclear CRABP2 enhances tumor growth by interacting with and downregulating the tumor suppressor RB1, whereas cytoplasmic CRABP2 suppresses CRC liver metastasis by interacting with AFG3L2 and promoting mitophagy. In addition, the AFG3L2-SLC25A39 axis is identified as a distinct mechanism by which cytoplasmic CRABP2 increases mitochondrial glutathione stability to promote cell proliferation independent of the nuclear RB1 pathway. Notably, analysis of tissue from CRC patients reveals that CRABP2 protein has distinct prognostic implications and functional roles in the progression and metastasis of CRC dependent on its subcellular localization. Ultimately, by elucidating the role of CRABP2 in CRC, it is aimed to provide new insight into disease pathogenesis and inform the development of therapeutic interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。