GRP78 Nanobody-Directed Immunotoxin Activates Innate Immunity Through STING Pathway to Synergize Tumor Immunotherapy.

GRP78纳米抗体导向免疫毒素通过STING通路激活先天免疫,从而增强肿瘤免疫疗法的疗效

阅读:5
作者:Wang Huifang, Zhou Runhua, Xu Chengchao, Dai Lingyun, Hou Rui, Zheng Liuhai, Fu Chunjin, Shi Guangwei, Wang Jingwei, Li Yang, Cen Jinpeng, Xu Xiaolong, Yu Le, Li Yilei, Wang Jigang, Du Qingfeng, Li Zhijie
The lack of targetable antigens poses a significant challenge in developing effective cancer-targeted therapies. Cell surface translocation of endoplasmic reticulum (ER) chaperones, such as glucose-regulated protein 78 (GRP78), during malignancy, drug resistance, and ER stress induced by therapies, offers a promising pan-cancer target. To target GRP78, nanobody C5, identified from a phage library and exhibiting high affinity for human and mouse GRP78, is utilized to develop the Pseudomonas exotoxin (PE) immunotoxin C5-PE38. C5-PE38 induced ER stress, apoptosis and immunogenic cell death in targeted cells and showed antitumor efficacy against colorectal cancer and melanoma models without obvious toxicity. Mechanistically, transcriptome profiling showed that C5-PE38 reshaped the tumor immune microenvironment with enhanced innate and adaptive immune response and response to interferon beta. Moreover, C5-PE38-induced cell death could trans-activate STING pathway in dendritic cells and macrophages, promoting CD8(+) T cell infiltration. It also sensitizes both primary and metastatic melanomas to anti-PD1 therapy, partly through STING activation. Overall, this study unveils a feasible GRP78 nanobody-directed therapy strategy for single or combinatorial cancer intervention. This work finds that C5-PE38-induced cell death stimulates STING-dependent cytosolic DNA release to promote antitumor immunity, a mechanism not previously reported for PE38, providing valuable insights for its clinical use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。