Targeting PIM1 by Bruceine D attenuates skin fibrosis via myofibroblast ferroptosis.

Bruceine D 通过诱导肌成纤维细胞铁死亡来抑制 PIM1,从而减轻皮肤纤维化

阅读:5
作者:Wang Jianzhang, Song Yajuan, Tan Xiaoying, Wang Tong, Shi Yi, Xu Xingbo, Du Juan, Yu Zhou, Song Baoqiang
Skin pan-fibrosis diseases-such as hypertrophic scar (HS), keloid scar (KS), and systemic sclerosis (SSc)-pose significant threats to patients' health and quality of life. In this study, the authors conducted both in vivo and in vitro experiments and discovered that the serine/threonine kinase PIM1 is upregulated in the myofibroblasts of human HS, KS, and SSc tissues, as well as in various animal models of skin fibrosis. Overexpression of PIM1 enhanced the profibrotic phenotypes of human hypertrophic scar fibroblasts (HSFs), which serve as key effector cells in the pathogenesis of skin pan-fibrosis diseases. Through high-throughput screening and subsequent laboratory assays, we identified the small molecule Bruceine D (BD) as a direct binder of PIM1. BD promoted ferroptosis in HSFs by selectively suppressing the PIM1-KEAP1-NRF2 pathway through augmented degradation of PIM1. In various in vivo models-including a hypertrophic scar mouse model, a rabbit ear hypertrophic scar model, and a bleomycin (BLM)-induced skin fibrosis mouse model-BD effectively attenuated fibrotic phenotypes. Collectively, these findings demonstrate that PIM1 serves as a common biomarker and therapeutic target for skin pan-fibrosis diseases. BD mitigates skin fibrosis by activating ferroptosis via PIM1 inhibition, highlighting its great translational potential and high promise to be developed to a clinical drug in treating these conditions, especially those with abnormally elevated PIM1 expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。