INTRODUCTION: Brain injury is a common sequela following cardiac arrest (CA), with up to 70% of hospitalized patients dying from it. Brain microvascular endothelial cells (BMVECs) play a crucial role in post-cardiac arrest brain injury (PCABI). However, the effects and mechanisms of targeting BMVEC energy metabolism to mitigate brain injury remain unclear. METHODS: We established a mouse model of cardiac arrest by injecting potassium chloride into the right internal jugular vein. Mass spectrometry detected targeted changes in short-chain fatty acids and energy metabolism metabolites in the CA/CPR group compared to the sham group. Mice with overexpressed ACSS2 in BMVECs were created using an AAV-BR1 vector, and ACSS2 knockout mice were generated using the CRE-LOXP system. The oxygen glucose deprivation/re-oxygenation (OGD/R) model was established to investigate the role and mechanisms of ACSS2 in endothelial cells in vitro. RESULTS: Metabolomics analysis revealed disrupted cerebral energy metabolism post-CA/CPR, with decreased acetyl-CoA and amino acids. Overexpression of ACSS2 in BMVECs increased acetyl-CoA levels and improved neurological function. Vascular endothelial cell-specific ACSS2 knockout mice exhibited reduced aortic sprouting in vitro. Overexpression of ACSS2 improved endothelial dysfunction following oxygen glucose deprivation/re-oxygenation (OGD/R) and influenced autophagy by interacting with transcription factor EB (TFEB) and modulating the AMP-activated protein kinase α (AMPKα) pathway. CONCLUSION: Our study shows that ACSS2 modulates the biological functions of BMVECs by promoting autophagy. Enhancing energy metabolism via ACSS2 may target PCABI treatment development.
Acetyl-CoA synthetase 2 alleviates brain injury following cardiac arrest by promoting autophagy in brain microvascular endothelial cells.
乙酰辅酶A合成酶2通过促进脑微血管内皮细胞的自噬来减轻心脏骤停后的脑损伤
阅读:10
作者:Zhang Wenbin, Yu Xin, Lin Yao, Wu Chenghao, Zhu Ruojie, Jiang Xiangkang, Tao Jiawei, Chen Ziwei, He Jiantao, Zhang Xiaodan, Xu Jiefeng, Zhang Mao
| 期刊: | Cellular and Molecular Life Sciences | 影响因子: | 6.200 |
| 时间: | 2025 | 起止号: | 2025 Apr 17; 82(1):160 |
| doi: | 10.1007/s00018-025-05689-7 | 研究方向: | 细胞生物学 |
| 信号通路: | Autophagy | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
