Nanostructured organic sheets sequestering small extracellular vesicles and reactive species to protect against radiation-induced mucositis

纳米结构有机薄片可隔离微小的细胞外囊泡和活性物质,从而预防放射性黏膜炎。

阅读:1
作者:Yuefei Zhu # ,Changyi Xu # ,Zhixin Li # ,Xiaomin Bao ,Ming Liu ,Yangyang She ,Renqiang Ma ,Xiangzhen Liu ,Jian Li ,Weiping Wen ,Kam W Leong ,Zhaoxu Tu
Radiation-induced mucositis significantly reduces quality of life in patients undergoing radiotherapy and chemoradiotherapy for head and neck cancer. Radiation exposure increases the secretion of small extracellular vesicles carrying double-stranded DNA, which triggers excessive inflammation. To address this, we develop functionalized organic nanosheets designed to capture these inflammatory vesicles from damaged tissue. Using template-based synthesis, we create nanostructured organic sheets functionalized with CD63 aptamers, enabling selective targeting of extracellular vesicles involved in mucositis. These nanosheets show enhanced vesicle-binding capacity compared to spherical nanoparticles, efficiently suppressing inflammation by inhibiting the stimulator of interferon genes activation in macrophages. Additionally, they effectively scavenge reactive oxygen and nitrogen species, further alleviating mucosal inflammation. Flow cytometry and transcriptome analyses in irradiated animal models confirm significant mucositis mitigation. This therapeutic platform provides a promising anti-inflammatory strategy by demonstrating how biomaterial geometry and surface functionalization can modulate small extracellular vesicle-mediated inflammation in radiation-induced mucositis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。