CXCL13 Damages Blood Spinal Cord Barrier by Promoting RNF6/Sqstm1-Ubiquitination Induced Autophagy in Experimental Allergic Encephalomyelitis.

CXCL13 通过促进 RNF6/Sqstm1 泛素化诱导的自噬来破坏实验性过敏性脑脊髓炎中的血脊髓屏障

阅读:5
作者:Han Jingjing, Hong Rui, Cao Cong, Feng Wanhua, Zhuang Wei, Wang Gui, Tang Jingchao, Yang Ya, Zhang Chu, Zhou Aihua, Qu Xuebin
The damage of blood spinal cord barrier (BSCB) is contributing to the disruption of immune microenvironment within central nervous system during the progression of multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). Nevertheless, the underlying mechanisms responsible for barrier impairment remain inadequately understood. Here, by analyzing the protein profiles in peripheral blood serum, chemokine (C-X-C motif) ligand 13 (CXCL13) was identified to be increased with the progression of MS and EAE. The absence of CXCL13 resulted in alleviation of EAE symptoms, as evidenced by a reduced clinical score, decreased barrier damage, as well as diminished demyelination and inflammatory response in the spinal cord. In the BSCB model, CXCL13 was found to impair barrier structure and function in a dose- and time-dependent manner, which was associated with exacerbated autophagy in endothelial cells, while the application of autophagy inhibitors partially mitigated this damage. Mechanistically, CXCL13 enhanced the expression of RNF6, an E3 ubiquitin-protein ligase, facilitating the conjugation to Sqstm1 for the ubiquitination at the K314 residue. These findings suggest that CXCL13 significantly contributes to the impairment of the BSCB by promoting RNF6/Sqstm1-ubiquitination-induced autophagy during the progression of EAE, thereby offering a promising diagnostic and therapeutic target for MS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。