Bone morphogenetic protein 9 (BMP9) exhibits remarkable osteogenic potential. However, the intricate mechanisms driving this function of BMP9 remain elusive. This study endeavors to investigate the potential role of sirtuin 5 (SIRT5) in enhancing BMP9's osteogenic capacity and decipher the underlying molecular pathways. To achieve this aim, we employed real-time PCR, western blotting, histochemical staining, and a cranial defect repair model to assess the impact of SIRT5 on BMP9-mediated osteogenesis. We utilized real-time PCR, western blotting, immunofluorescent staining, and immunoprecipitation assay to explore the associated mechanisms. Our results revealed that SIRT5 significantly up-regulated BMP9-induced osteogenic markers, while SIRT5 knockdown reduced their expression. Concurrently, hypoxia-inducible factor 1 subunit alpha (HIF-1α) level was increased by SIRT5, but reduced by SIRT5 knockdown. Notably, HIF-1α potentiated the SIRT5's ability to strengthen BMP9's osteogenic potential, whereas HIF-1α silencing reduced this effect, which was confirmed by bone defect repair assay. The acetylation and malonylation levels of HIF-1α were reduced by SIRT5, which may enhance its stability to promote BMP9's osteogenic effect. Conversely, SIRT5 knockdown reversed these effects and promoted the degradation of HIF-1α. Collectively, our results demonstrated that the BMP9's osteogenic potential could be promoted by SIRT5, potentially through stabilizing HIF-1α by reducing its acetylation and malonylation modification. This discovery may offer a novel strategy to accelerate bone tissue engineering by enhancing osteogenic differentiation, and it also sheds light on the possible mechanisms underlying BMP9-mediated osteogenic differentiation.
SIRT5 promotes the osteo-inductive potential of BMP9 by stabilizing the HIF-1α protein in mouse embryonic fibroblasts.
SIRT5 通过稳定小鼠胚胎成纤维细胞中的 HIF-1α 蛋白来促进 BMP9 的成骨诱导潜能
阅读:5
作者:Liu Lu, Ye Fanglin, Jiang Yue, Liu Wenting, He Dongmei, He Wenge, Gao Xiang, Liu Hang, Liao Junyi, He Baicheng, He Fang
| 期刊: | Genes & Diseases | 影响因子: | 9.400 |
| 时间: | 2025 | 起止号: | 2025 Feb 18; 12(4):101563 |
| doi: | 10.1016/j.gendis.2025.101563 | 种属: | Mouse |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
