Identification of a Novel Antibacterial Function of Mammalian Calreticulin.

哺乳动物钙网蛋白新型抗菌功能的鉴定

阅读:3
作者:Ma Yichao, Liu Jiachen, Qin Xinming, Cui Xiaojing, Yang Qian
Calreticulin is a highly conserved and multifunctional molecular chaperone ubiquitously expressed in humans and animals. Beyond its well-established roles in calcium homeostasis, protein folding, and immune regulation, recent studies in aquatic species have suggested a previously unrecognized antimicrobial function of calreticulin. These findings raise the question of whether calreticulin also exerts antibacterial activity in terrestrial mammals, which has not been systematically investigated to date. To address this knowledge gap, we successfully constructed and expressed recombinant goat calreticulin using the Pichia pastoris expression system, yielding a protein of over 99% purity that predominantly exists in dimeric form. Functional assays demonstrated that both recombinant goat and human calreticulin exhibited preliminary inhibitory activity against Escherichia coli, Salmonella typhimurium, and Pasteurella multocida. Calreticulin was capable of binding to these three bacterial species as well as bacterial lipopolysaccharides (LPS). Notably, in the presence of Ca(2+), calreticulin induced bacterial aggregation, indicating a potential mechanism for limiting bacterial dissemination and proliferation. Given the high anatomical, genetic, and physiological similarity between goats and humans-particularly in respiratory tract structure and mucosal immune function-neonatal goats were selected as a relevant model for evaluating the in vivo antimicrobial efficacy of calreticulin. Accordingly, we established an intranasal infection model using Pasteurella multocida to assess the protective role of calreticulin against respiratory bacterial challenge. Following infection, calreticulin expression was markedly upregulated in the nasal mucosa, trachea, and lung tissues. Moreover, intranasal administration of exogenous calreticulin significantly alleviated infection-induced pathological injury to the respiratory system and effectively decreased bacterial loads in infected tissues. Collectively, this study systematically elucidates the antimicrobial activity of calreticulin in a mammalian model and highlights its potential as a natural immune effector, providing novel insights for the development of host-targeted antimicrobial strategies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。