Hypoxia regulate developmental coronary angiogenesis potentially through VEGF-R2- and SOX17-mediated signaling.

缺氧可能通过 VEGF-R2 和 SOX17 介导的信号传导来调节发育性冠状动脉血管生成

阅读:4
作者:Vitali Halie E, Kuschel Bryce, Sherpa Chhiring, Jones Brendan W, Jacob Nisha, Madiha Syeda A, Elliott Sam, Dziennik Eddie, Kreun Lily, Conatser Cora, Bhetwal Bhupal P, Sharma Bikram
BACKGROUND: The development of coronary vessels in embryonic mouse heart involves various progenitor populations, including sinus venosus (SV), endocardium, and proepicardium. ELA/APJ signaling is known to regulate coronary growth from the SV, whereas VEGF-A/VEGF-R2 signaling controls growth from the endocardium. Previous studies suggest hypoxia might regulate coronary growth, but its specific downstream pathways are unclear. In this study, we further investigated the role of hypoxia and have identified SOX17- and VEGF-R2-mediated signaling as the potential downstream pathways in its regulation of developmental coronary angiogenesis. RESULTS: HIF-1α stabilization by knocking out von Hippel Lindau (VHL) protein in the myocardium (cKO) disrupted normal coronary angiogenesis in embryonic mouse hearts, resembling patterns of accelerated coronary growth. VEGF-R2 expression was increased in coronary endothelial cells under hypoxia in vitro and in VHL cKO hearts in vivo. Similarly, SOX17 expression was increased in the VHL cKO hearts, while its knockout in the endocardium disrupted normal coronary growth. CONCLUSION: These findings provide further evidence that hypoxia regulates developmental coronary growth potentially through VEGF-R2 and SOX17 pathways, shedding light on mechanisms of coronary vessel development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。