A common pathogenic event that occurs in all forms of Alzheimer's disease is the progressive accumulation of amyloid beta-peptide (Abeta) in brain regions responsible for higher cognitive functions. Inhibition of acyl-coenzyme A: cholesterol acyltransferase (ACAT), which generates intracellular cholesteryl esters from free cholesterol and fatty acids, reduces the biogenesis of the Abeta from the amyloid precursor protein (APP). Here we have used AC29 cells, defective in ACAT activity, to show that ACAT activity steers APP either toward or away from a novel proteolytic pathway that replaces both alpha and the amyloidogenic beta cleavages of APP. This alternative pathway involves a novel cleavage of APP holoprotein at Glu281, which correlates with reduced ACAT activity and Abeta generation in AC29 cells. This sterol-dependent cleavage of APP occurs in the endosomal compartment after internalization of cell surface APP. The resulting novel C-terminal fragment APP-C470 is destined to proteasomal degradation limiting the availability of APP for the Abeta generating system. The proportion of APP molecules that are directed to the novel cleavage pathway is regulated by the ratio of free cholesterol and cholesteryl esters in cells. These results suggest that subcellular cholesterol distribution may be an important regulator of the cellular fate of APP holoprotein and that there may exist several competing proteolytic systems responsible for APP processing within the endosomal compartment.
Novel N-terminal cleavage of APP precludes Abeta generation in ACAT-defective AC29 cells.
APP 的新型 N 端切割可阻止 ACAT 缺陷型 AC29 细胞中 Aβ 的生成
阅读:6
作者:Huttunen Henri J, Puglielli Luigi, Ellis Blake C, MacKenzie Ingano Laura A, Kovacs Dora M
| 期刊: | Journal of Molecular Neuroscience | 影响因子: | 2.700 |
| 时间: | 2009 | 起止号: | 2009 Jan;37(1):6-15 |
| doi: | 10.1007/s12031-008-9088-0 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
